參考:http://scikit-learn.org/stable/model_selection.html 有待翻译,敬请期待: 3.1. Cross-validation: evaluating estimator performance 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47099275 3.1.1. Computing cross-validated metrics 3.1.1.1. Obtaining predict…
学习笔记之scikit-learn - 浩然119 - 博客园 https://www.cnblogs.com/pegasus923/p/9997485.html 3. Model selection and evaluation — scikit-learn 0.20.3 documentation https://scikit-learn.org/stable/model_selection.html#model-selection Accuracy paradox - Wikipedia…
http://blog.csdn.net/pipisorry/article/details/52250983 选择合适的estimator 通常机器学习最难的一部分是选择合适的estimator,不同的estimator适用于不同的数据集和问题. sklearn官方文档提供了一个图[flowchart],可以快速地根据你的数据和问题选择合适的estimator,单击相应的区域还可以获得更具体的内容. 代码中我一般这么写 def gen_estimators(): ''' List of the…
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
规则化和模型选择(Regularization and model selection) 转:http://www.cnblogs.com/jerrylead/archive/2011/03/27/1996799.html 1 问题      模型选择问题:对于一个学习问题,可以有多种模型选择.比如要拟合一组样本点,可以使用线性回归,也可以用多项式回归.那么使用哪种模型好呢(能够在偏差和方差之间达到平衡最优)? 还有一类参数选择问题:如果我们想使用带权值的回归模型,那么怎么选择权重w公式里的参数…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
Model selection模型选择 ML中的一个重要任务是模型选择,或使用数据为给定任务找到最佳的模型或参数. 这也称为调优. 可以对诸如Logistic回归的单独Estimators进行调整,或者对包括多个算法,特征和其他步骤的整个Pipeline进行调整. 用户可以一次调整整个Pipeline,而不必单独调整Pipeline中的每个元素. MLlib支持使用CrossValidator和TrainValidationSplit等工具进行模型选择.这些工具需要以下items:    Est…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
Regularization and model selection 假设我们为了一个学习问题尝试从几个模型中选择一个合适的模型.例如,我们可能用一个多项式回归模型hθ(x)=g(θ0+θ1x+θ2x2+-θkxk),我们需要设定一个合适的阶数k,怎样才能决定这个阶数k,以使得最终模型的bias与variance之间能够达到某种平衡,或者,在locally weighted regression 中,我们如何确定参数τ,以及在ℓ1-regularized 的SVM中,如何确定参数C. 在为某个l…
假设我们现在想要知道what degree of polynomial to fit to a data set 或者 应该选择什么features 或者 如何选择regularization parameter λ 我们该如何做?----Model selection process 很好的拟合training set并不意味着是一个好的hypothesis 上图是一个overfitting的例子,它能很好的拟合training data,但它不是一个好的预测函数.所以一般来说,the tra…
网易公开课,第10,11课 notes,http://cs229.stanford.edu/notes/cs229-notes5.pdf   Model Selection 首先需要解决的问题是,模型选择问题,如何来平衡bais和variance来自动选择模型?比如对于多项式分类,如何决定阶数k,对于locally weighted regression如何决定窗口大小,对于SVM如何决定参数C For instance, we might be using a polynomial regre…
打造强大的BaseModel(1):让Model自我描述 这篇文章将讲述Model一项更高级也最常用的功能,让Model实现自动映射–将字典转化成Model(所有代码全由Swift实现) 将JSON转化为Model的意义 在iOS开发中,基于Model的数据流起到了至关重要的作用.从网络获取的数据需要进一步处理转到成View可用的Model,再通过ViewController传送给View展示出来,从View中反馈的数据也可以转为为Model,再将Model转化成JSON发送给服务器.通常开发过…
原文:ASP.NET MVC基于标注特性的Model验证:一个Model,多种验证规则 对于Model验证,理想的设计应该是场景驱动的,而不是Model(类型)驱动的,也就是对于同一个Model对象,在不同的使用场景中可能具有不同的验证规则.举个简单的例子,对于一个表示应聘者的数据对象来说,针对应聘的岗位不同,肯定对应聘者的年龄.性别.专业技能等方面有不同的要求.但是ASP.NET MVC的Model验证确是Model驱动的,因为验证规则以验证特性的形式应用到Model类型及其属性上.这样的验证…
Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-learn with python. Following is the package version that I use below: The Python version: 3.6.2 The Numpy version: 1.8.0rc1 The Scikit-Learn version: 0.19…
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合 『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼…
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.…
Linear regression with regularization 当我们的λ很大时,hθ(x)≍θ0,是一条直线,会出现underfit:当我们的λ很小时(=0时),即相当于没有做regularization,会出现overfit;只有当我们的λ取intermediate值时,才会刚刚好.那么我们怎么自动来选择这个λ的值呢? 正则化时的Jtrain(θ),Jcv(θ),Jtest(θ)的表达式 正则化时的Jtrain(θ),Jcv(θ),Jtest(θ)的表达式不带有regulariz…
所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的垂直搜索引擎,专门为用户提供团购.优惠券的检索:同时存在一个通用的搜索引擎,比如百度,通用搜索引擎希望能够识别出一个Query是否具有O2O检索意图,如果有则调用O2O垂直搜索引擎,获取结果作为通用搜索引擎的结果补充. 我们的目的是学习出一个分类器(classifier),分类器可以理解为一个函数,…
怎样选用正确的特征构造学习算法或者如何选择学习算法中的正则化参数lambda?这些问题我们称之为模型选择问题. 在对于这一问题的讨论中,我们不仅将数据分为:训练集和测试集,而是将数据分为三个数据组:也就是训练集.验证集和测试集.本节将会介绍这些内容的含义,以及如何使用它们进行模型选择.在前面的学习中,我们已经多次接触到过拟合现象.在过拟合的情况中学习算法在适用于训练集时表现非常完美,但这并不代表此时的假设也很完美(如下图). 更普遍地说,过拟合是训练集误差通常不能正确预测出该假设是否能很好地拟合…
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model compression for deep learning based speech enhancem…
写在前面 阅读目录: 设计误区 数据库已死 枚举映射 关联映射 后记 在上一篇<一缕阳光:DDD(领域驱动设计)应对具体业务场景,如何聚焦 Domain Model(领域模型)?>博文中,探讨的是如何聚焦领域模型(抛开一些干扰因素,才能把精力集中在领域模型的设计上)?需要注意的是,上一篇我讲的并不是如何设计领域模型(本篇也是)?而是如何聚焦领域模型,领域模型的设计是个迭代过程,不能一概而论,还在路上. 当有一个简单的领域模型用例,完成一个从上而下过程的时候,就需要对领域模型和数据库进行对象关系…
@tags: caffe 文件类别 solver文件 是一堆超参数,比如迭代次数,是否用GPU,多少次迭代暂存一次训练所得参数,动量项,权重衰减(即正则化参数),基本的learning rate,多少次迭代打印一次loss,以及网络结构描述文件(即model文件)存储位置,等等 比如: lenet_solver.prototxt model文件 也有一些参数,指定了深度卷积网的结构,包括每一层各个参数,以及训练输入的数据存放位置等. 比如: lenet_train_test.prototxt w…
前言 从事iOS开发已经两年了,从一无所知到现在能独立带领团队完成一系列APP的开发,网络上的大神给了我太多的帮助.他们无私地贡献自己的心得和经验,写出了一篇篇精美的文章.现在我也开始为大家贡献自己的心得,把它写成一系列iOS开发技巧系列文章. 这一系列文章都干货十足,希望各位读者可以积极留言,和我沟通. 何为Model? Model就是MVC和MVVM最前面的M,显然Model的重要性不言而喻.只有在将网络&数据库获取的数据正确转化成Model后,才能更好地服务ViewController和V…
回顾 上一篇请移步:zrender源码分析1:总体结构 本篇进行ZRender的MVC结构中的M进行分析 总体理解 上篇说到,Storage负责MVC层中的Model,也就是模型,对于zrender来说,这个model就是shape对象,在1.x表现的还不强烈,到了2.x, 在zr.addShape()的时候,传入的参数就必须是new出来的对象了详情请看这里 2.x相比1.x的变化,关于这个变化多说点吧,那就是从1.x升级到2.x的时候,因为方式变了,总不能改掉所有的代码,总不能像ext一样,…
一,基本操作 用于实现面向对象编程语言里不同类型系统的数据之间的转换,换言之,就是用面向对象的方式去操作数据库的创建表以及增删改查等操作. 1.增(create , save): from app01.models import * #create方式一: Author.objects.create(name='Alvin') #create方式二: Author.objects.create(**{"name":"alex"}) #save方式一: author=…
model是关于你的数据的单一的,确定的信息来源. 它包含您正在存储的数据的基本字段和行为.Django通过抽象化的模型层(models)为你的网络应用提供对于数据的结构化处理和操作处理,数据库相关的代码一般写在 models.py 中,Django 支持 sqlite3, MySQL, PostgreSQL等数据库,使用数据库API对数据库进行增删改查的操作. 使用哪种数据库,只需要在settings.py中配置即可,如: <1> sqlite: django默认使用sqlite的数据库,默…
目录 Django Model 模型 MODEL需要在脑子里记住的基础概念 区分清楚,必须不能混淆的 class Meta 内嵌元数据定义类 简单model创建实例 数据源配置 接着通过models在数据库中创建映射的表 Field class model表示表关系 model.objects 有关model继承 有关通过model进行curd操作 关于FileField 和 ImageField 字段类型类 还有一个UploadedFile 对象,这个对象就是form表单post上来的文件对象…
Convolutional Neural Networks: Application Welcome to Course 4's second assignment! In this notebook, you will: Implement helper functions that you will use when implementing a TensorFlow model Implement a fully functioning ConvNet using TensorFlow (…
Convolutional Neural Networks: Step by Step Welcome to Course 4's first assignment! In this assignment, you will implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagati…