1.map算子 private static void map() { //创建SparkConf SparkConf conf = new SparkConf() .setAppName("map") .setMaster("local"); //创建JavasparkContext JavaSparkContext sc = new JavaSparkContext(conf); //构造集合 List<Integer> numbers = Arra…
Hbase深入学习(六) ―― Java操作HBase 本文讲述如何用hbase shell命令和hbase java api对hbase服务器进行操作. 先看以下读取一行记录hbase是如何进行工作的,首先hbaseclient端会连接zookeeper qurom,例如hbase_config.set(“hbase.zookeeper.quorum”,”192.168.50.216”)).通过zookeeper组件client能获知哪个server管理root-region.那么client…
标签(空格分隔): 学习笔记 Spark编程模型的两种抽象:RDD(Resilient Distributed Dataset)和两种共享变量(支持并行计算的广播变量和累加器). RDD RDD是一种具有容错性的基于内存的集群计算方法. RDD特征: 分区(partition):有一个数据分片列表,能够将数据进行切分,切分后的数据能够进行并行极端,是数据集的原子组成部分: 函数(compute):计算每个分片,得出一个可遍历的结果,用于说明在父RDD上执行何种计算: 依赖(dependency)…
通过一个简单的单词计数的例子来开始介绍RDD编程. import org.apache.spark.{SparkConf, SparkContext} object word { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local").setAppName("word") val sc = new SparkContext(conf) val inpu…
Spark的核心是建立在统一的抽象RDD之上,使得Spark的各个组件可以无缝进行集成,在同一个应用程序中完成大数据计算任务.RDD的设计理念源自AMP实验室发表的论文<Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing>. RDD设计背景 在实际应用中,存在许多迭代式算法(比如机器学习.图算法等)和交互式数据挖掘工具,这些应用场景的共同之处是,不同计算阶段之间…
一.打印RDD内容 https://blog.csdn.net/wengyupeng/article/details/52808503 1.方法 2种方式: 1 rdd.collect().foreach {println} 2 rdd.take(10).foreach { println } //take(10) 取前10个 2.例子 val logData = sparkcontext.textFile(logFile, 2).cache() logData.collect().foreac…
布隆过滤器解决"面试题: 如何建立一个十亿级别的哈希表,限制内存空间" "如何快速查询一个10亿大小的集合中的元素是否存在" 如题 布隆过滤器确实很神奇, 简单来说就是通过多次hash将key存进一个集合中,可以灰常快速地在数亿级的数据中快速查找! 实现布隆过滤器需要用bit位存储的数组, 千万别用int[] ,毕竟一个int整形占32位,一个int = 32 bit! 但是Java没有bit, 那用byte吧,一个byte(8位)当做8位的bit来算吧,每一位代表…
介绍 阻塞队列(BlockingQueue)是指当队列满时,队列会阻塞插入元素的线程,直到队列不满:当队列空时,队列会阻塞获得元素的线程,直到队列变非空.阻塞队列就是生产者用来存放元素.消费者用来获取元素的容器. 当线程 插入/获取 动作由于队列 满/空 阻塞后,队列也提供了一些机制去处理,或抛出异常,或返回特殊值,或者线程一直等待... 方法/处理方式 抛出异常 返回特殊值 一直阻塞 超时退出 插入方法 add(e) offer(e) put(e) offer(e, timeout, unit…
Spark菜鸟学习营Day1 从Java到RDD编程 菜鸟训练营主要的目标是帮助大家从零开始,初步掌握Spark程序的开发. Spark的编程模型是一步一步发展过来的,今天主要带大家走一下这段路,让我们从一段最最基础的Java代码开始. 问题:Java有哪些数据结构 大致有如下几种,其中List与Map是最重要的: List Map Set Array Heap Stack Queue Tree 练习:构造一个1-5的List,把他们打印出来 写法1 List<Integer> input =…
Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? 1.2 RDD的属性 1.3 WordCount粗图解RDD 二.RDD的创建方式 2.1 通过读取文件生成的 2.2 通过并行化的方式创建RDD 2.3 其他方式 三.RDD编程API 3.1 Transformation 3.2 Action 3.3 Spark WordCount代码编写 3.…
Spark学习之RDD编程(2) 1. Spark中的RDD是一个不可变的分布式对象集合. 2. 在Spark中数据的操作不外乎创建RDD.转化已有的RDD以及调用RDD操作进行求值. 3. 创建RDD:1)读取一个外部数据集2)在驱动器程序里分发驱动器程序中的对象集合. 4. RDD支持的操作: 1)转换操作,由一个RDD生成一个新的RDD. 2)行动操作,对RDD进行计算结果,并把结果返回到驱动器程序中,或者把结果存储到外部存储系统(如HDFS). 5. Spark程序或者shell会话都会…
RDD概述 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.在 Spark 中,对数据的所有操作不外乎创建 RDD.转化已有RDD 以及调用 RDD 操作进行求值.每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上.RDD 可以包含 Python.Java.Scala 中任意类型的对象, 甚至可以包含用户自定义的对象.RDD具有数据流模型的特…
目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常见的转化操作和行动操作 基本RDD 行动操作 不同 RDD 的类型转换 持久化 Spark学习笔记3--RDD(下) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 向Spark传递函数 大部分 Spark 的转化操作和一部分行动操作,都需要传递函数后进行计算.如…
目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> RDD是什么? 弹性分布式数据集(Resilient Distributed Dataset,简称 RDD) Spark 的核心概念 一个不可变的分布式对象集合 每个 RDD 都被分为多个分区运行在集群的不同节点上 RDD…
在我看来,Spark编程中的action算子的作用就像一个触发器,用来触发之前的transformation算子.transformation操作具有懒加载的特性,你定义完操作之后并不会立即加载,只有当某个action的算子执行之后,前面所有的transformation算子才会全部执行.常用的action算子如下代码所列:(java版) package cn.spark.study.core; import java.util.Arrays; import java.util.List; im…
我们来了解一下 自定义菜单创建接口: http请求方式:POST(请使用https协议) https://api.weixin.qq.com/cgi-bin/menu/create?access_token=ACCESS_TOKEN 自定义菜单查询接口: http请求方式:GET https://api.weixin.qq.com/cgi-bin/menu/get?access_token=ACCESS_TOKEN 自定义菜单删除接口: http请求方式:GET https://api.weix…
Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外乎创建 RDD.转化已有 RDD 以及调用 RDD 操作进行求值.而在这一切背后,Spark 会自动将RDD 中的数据分发到集群上,并将操作并行化执行. 一.RDD基础 Spark 中的 RDD 就是一个不可变的分布式对象集合.每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上.RDD…
[第二届构建之法论坛] 预培训文档(Java版) 学习总结 我通读并学习了此文档,并且动手实践了一遍.以下是我学习过程的记录~ Part1.配置环境 配置JDK 原文中提到了2个容易被混淆的概念 JDK 与 JRE,在此温习一下: JDK全称为 Java Development Kit,Java程序的开发人员必须安装:JRE全称为Java Runtime Environment,它只是Java程序的一个运行环境. JDK中一般已经带了JRE包,所以我们只需要下载JDK并安装配置即可. 由于我之前…
一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片…
参考: http://spark.apache.org/docs/latest/programming-guide.html 后面懒得翻译了,英文记的,以后复习时再翻. 摘要:每个Spark application包含一个driver program 来运行main 函数,在集群上进行各种并行操作. RDD是Spark的核心.除了RDD,Spark的另一个抽象时并行操作中使用的两种 shared variables: broadcast variables和accumulators. Spark…
Spark学习之键值对(pair RDD)操作(3) 1. 我们通常从一个RDD中提取某些字段(如代表事件时间.用户ID或者其他标识符的字段),并使用这些字段为pair RDD操作中的键. 2. 创建pair RDD 1)读取本身就是键值对的数据 2)一个普通的RDD通过map()转为pair RDD,传递的函数需要返回键值对. Python中使用第一个单词作为键创建出一个pair RDD pairs = lines.amp(lambda x: (x.split(" ")[0],x))…
Java基础及JavaWEB以及SSM框架学习笔记Xmind版 转行做程序员也1年多了,最近开始整理以前学习过程中记录的笔记,以及一些容易犯错的内容.现在分享给网友们.笔记共三部分. JavaSE 目录如下: 部分笔记: JavaWEB 目录如下: 部分笔记: SSM框架 目录如下: 部分笔记: 下载方式: 笔记我全都打包放在了我的网盘里.需要的朋友直接百度云下载 链接:https://pan.baidu.com/s/1IAsqekmkUNBjmsEOdINFpQ 提取码:xg9k 整理不易,点…
第六周学习总结&java实验报告四 学习总结: 上一周因为接近国庆假期,所以老师没有讲太多的新知识点,只要是带我们一起做了一个动物模拟变声器的实验,进一步了解和学习到继承的 有关知识点和应用:继承过程中如果出现转型的问题时,如果是向上转型:子类对象--父类对象 这个称之为自动类型转换: 如果是向下转型:父类对象--子类对象 这个称之为强制类型转换,它不仅要首先发生向上类型转换然后进行向下类型转换,而且还要进行安全性的验证: 然后就是抽象类,关键词abstract:接口关键词interface:…
RDD的概述 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个计算任务处…
Hadoop是对大数据集进行分布式计算的标准工具,这也是为什么当你穿过机场时能看到”大数据(Big Data)”广告的原因.它已经成为大数据的操作系统,提供了包括工具和技巧在内的丰富生态系统,允许使用相对便宜的商业硬件集群进行超级计算机级别的计算.2003和2004年,两个来自Google的观点使Hadoop成为可能:一个分布式存储框架(Google文件系统),在Hadoop中被实现为HDFS:一个分布式计算框架(MapReduce). 这两个观点成为过去十年规模分析(scaling analy…
课程内容 Spark修炼之道(基础篇)--Linux基础(15讲).Akka分布式编程(8讲) Spark修炼之道(进阶篇)--Spark入门到精通(30讲) Spark修炼之道(实战篇)--Spark应用开发实战篇(20讲) Spark修炼之道(高级篇)--Spark源代码解析(50讲) 部分内容会在实际编写时动态调整.或补充.或删除. Spark修炼之道(基础篇)--Linux大数据开发基础(15讲). Linux大数据开发基础--第一节:Ubuntu Linux安装与介绍 Linux大数据…
一.Scala编程详解: 第1讲-Spark的前世今生 第2讲-课程介绍.特色与价值 第3讲-Scala编程详解:基础语法 第4讲-Scala编程详解:条件控制与循环 第5讲-Scala编程详解:函数入门 第6讲-Scala编程详解:函数入门之默认参数和带名参数 第7讲-Scala编程详解:函数入门之变长参数 第8讲-Scala编程详解:函数入门之过程.lazy值和异常 第9讲-Scala编程详解:数组操作之Array.ArrayBuffer以及遍历数组 第10讲-Scala编程详解:数组操作之…
http://dblab.xmu.edu.cn/blog/spark/ 厦大数据库实验室博客 总结.分享.收获 实验室主页 首页 大数据 数据库 数据挖掘 其他 子雨大数据之Spark入门教程  林子雨老师 2016年10月30日 (updated: 2017年5月28日) 37020 [版权声明]博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!版权所有,侵权必究! Spark最初诞生于美国加州大学伯克利分校(UC Berkeley)的AMP实验室,是一个可应用于大规模数据处理的快速…
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高性能效率实用灵活性.也可以与hadoop切实相互结合. spark核心部分分为RDD.Spark SQL.Spark Streaming.MLlib.GraphX.Spark R等核心组件解决了很多的大数据问题,其完美的框架日受欢迎.其相应的生态环境包括zepplin等可视化方面…
在FP Tree算法原理总结和PrefixSpan算法原理总结中,我们对FP Tree和PrefixSpan这两种关联算法的原理做了总结,这里就从实践的角度介绍如何使用这两个算法.由于scikit-learn中没有关联算法的类库,而Spark MLlib有,本文的使用以Spark MLlib作为使用环境. 1. Spark MLlib关联算法概述 在Spark MLlib中,也只实现了两种关联算法,即我们的FP Tree和PrefixSpan,而像Apriori,GSP之类的关联算法是没有的.而…