Coding the Matrix: Linear Algebra through Computer Science Applications 本周的作业较少,只有一个编程任务hw2.作业比较简单,如果大学学习过矩阵代数的话,基本上没有什么问题,不过要注意的一点是基2的Span的求法. 基2空间上,在所有基向量中取任意个数个,叠加组合就得到了Span.但是如何取任意个呢?下面给出几种方法. 一种方法是对于任意可能的个数,利用Python中的排列组合module生成对应于此个数的所有排列,即得到S…
这一周的作业,刚压线写完.Problem3 没有写,不想证明了.从Problem 9 开始一直到最后难度都挺大的,我是在论坛上看过了别人的讨论才写出来的,挣扎了很久. Problem 9在给定的基上分解向量,里面调用了hw4的一些函数,通过solve函数获得矩阵方程的解 Problem 10判断矩阵是不是可逆的,注意判断矩阵是不是square的 Problem 11和Problem 12 都是求逆,也是解方程,只是函数的参数需要参考一下源码 发现一个有趣的事情,Coding the Matrix…
https://en.wikipedia.org/wiki/Congruence_relation In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in…
Vector Space Model The vector space model provides a way of comparing a multiterm query against a document. The output is a single score that represents how well the document matches the query. In order to do this, the model represents both the docum…
Mikolov T , Chen K , Corrado G , et al. Efficient Estimation of Word Representations in Vector Space[J]. Computer ence, 2013. 源码:https://github.com/danielfrg/word2vec 文章目的 本文的目的是提出学习高质量的词向量(word2vec)的方法,这些方法主要利用在十亿或者百万词汇的数据集上.因此作者提出了两个新颖的模型(CBOW,Skip…
dmesg 中异常打印: kernel: irq 632: Affinity broken due to vector space exhaustion. kernel: irq 633: Affinity broken due to vector space exhaustion. 这个打印并不是申请不到中断号,而是已经申请到了中断号,但是配置中断路由的时候, 想要生效的中断绑核与预期不一致,代码为: commit 743dac494d61d991967ebcfab92e4f80dc7583b…
1. 矩阵与映射 矩阵和映射包含两方面的关系: 简单:已知矩阵 M, 从向量 x 映射到 M * x. (注:矩阵与行向量的点乘) 稍微复杂:已知映射 x ->M * x, 求矩阵 M. 第一种情况直接运算就可以得到映射,就不详细写了,着重写第二种情况. 首先,假设 x 为 n 维行向量, M*x 为 m 维列向量,可以知道 M 是 m × n 大小的矩阵.在点乘里面,M 的列向量是基向量, x 向量的每个分量是线性组合的系数,M 矩阵可以写成: 怎么求出 v1, v2, ..., vn 向量呢…
论文链接:https://arxiv.org/pdf/1301.3781.pdf 参考: A Neural Probabilistic Language Model (2003)论文要点 https://www.cnblogs.com/yaoyaohust/p/11310774.html - 线性规律linear regularities: "king - man = queen - woman" - 语法和语义规律syntactic and semantic regularitie…
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. Follow up: Did you use extra space? A straight forward solution using O(mn) space is probably a bad idea. A simple improvement uses O(m + n) space, but stil…
小结: 1.block diagonal matrix 直和 块对角矩阵 A block diagonal matrix is a block matrix that is a square matrix, and having main diagonal blocks square matrices, such that the off-diagonal blocks are zero matrices. A block diagonal matrix A has the form wher…
导语:其他集数可在[线性代数]标籤文章找到.线性子空间是一个大课题,这里先提供一个简单的入门,承接先前关于矩阵代数的讨论,期待与你的交流. Overview: Subspace definition In a vector space of Rn, sets of vectors spanning a volume EQUAL TO OR SMALLER THAN that of Rn form subspaces of that vector space of Rn. A subset H o…
Overview: Matrix algebra Matrix algebra covers rules allowing matrices to be manipulated algebraically via addition, subtraction, multiplication and division. However, despite the manipulations illustrated in the following may seem to be like that of…
Vector Space: R1, R2, R3,R4 , .... Each space Rn consists of a whole collection of vectors. R5 contains all column vectors with five components. This is called "5-dimensional space". The great thing about linear algebra is that it deals easily w…
Chap 1: Linear Equations and Matrix Linear equations Gaussian elimination Pivot; Triangularize; Back substitution; Coefficient matrix, augmented matrix, row vector & column vector; the meaning of Ai*, A*j; 3 situations of solution existence (under th…