运动检测(前景检测)之(一)ViBe zouxy09@qq.com http://blog.csdn.net/zouxy09 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路.个人了解的大概概括为以下一些: 帧差.背景减除(GMM.CodeBook. SOBS. SACON. VIBE. W4.多帧平均……).光流(稀疏光流.稠密光流).运动竞争(Motion Competition).运动模版(运动历史图像).时间熵……等等.如果加上他们的改进版,那就是很大的一个家…
运动检测(前景检测)之(二)混合高斯模型GMM zouxy09@qq.com http://blog.csdn.net/zouxy09 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路.个人了解的大概概括为以下一些: 帧差.背景减除(GMM.CodeBook. SOBS. SACON. VIBE. W4.多帧平均……).光流(稀疏光流.稠密光流).运动竞争(Motion Competition).运动模版(运动历史图像).时间熵……等等.如果加上他们的改进版,那就是很…
原文:http://blog.csdn.net/zouxy09/article/details/9622285 转自:http://blog.csdn.net/app_12062011/article/details/51866319 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路.个人了解的大概概括为以下一些: 帧差.背景减除(GMM.CodeBook. SOBS. SACON. VIBE. W4.多帧平均……).光流(稀疏光流.稠密光流).运动竞争(Motion…
转自:http://blog.csdn.net/zouxy09/article/details/9622401 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路.个人了解的大概概括为以下一些: 帧差.背景减除(GMM.CodeBook. SOBS. SACON. VIBE. W4.多帧平均……).光流(稀疏光流.稠密光流).运动竞争(Motion Competition).运动模版(运动历史图像).时间熵……等等.如果加上他们的改进版,那就是很大的一个家族了. 对于上…
ViBe算法:ViBe - a powerful technique for background detection and subtraction in video sequences 算法官网:http://www2.ulg.ac.be/telecom/research/vibe/ 描述: ViBe是一种像素级视频背景建模或前景检测的算法,效果优于所熟知的几种算法,对硬件内存占用也少. Code: 算法执行效率测试程序,windows和linux操作系统下的程序和c/c++文件都可以在作者…
ViBe算法:ViBe - a powerful technique for background detection and subtraction in video sequences 算法官网:http://www2.ulg.ac.be/telecom/research/vibe/ 描述: ViBe是一种像素级视频背景建模或前景检测的算法,效果优于所熟知的几种算法,对硬件内存占用也少. Code: 算法执行效率测试程序,windows和linux操作系统下的程序和c/c++文件都可以在作者…
tornadomeet 前景检测算法_4(opencv自带GMM) http://www.cnblogs.com/tornadomeet/archive/2012/06/02/2531705.html 前面已经有3篇博文介绍了背景减图方面相关知识(见下面的链接),在第3篇博文中自己也实现了gmm简单算法,但效果不是很好,下面来体验下opencv自带2个gmm算法. opencv实现背景减图法1(codebook和平均背景法) http://www.cnblogs.com/tornadomeet/…
前景分割中一个非常重要的研究方向就是背景减图法,因为背景减图的方法简单,原理容易被想到,且在智能视频监控领域中,摄像机很多情况下是固定的,且背景也是基本不变或者是缓慢变换的,在这种场合背景减图法的应用驱使了其不少科研人员去研究它. 但是背景减图获得前景图像的方法缺点也很多:比如说光照因素,遮挡因素,动态周期背景,且背景非周期背景,且一般情况下我们考虑的是每个像素点之间独立,这对实际应用留下了很大的隐患. 这一小讲主要是讲简单背景减图法和codebook法. 一.简单背景减图法的工作原理. 在视频…
1.VIBE思想: 为每个像素点存储了一个样本集,样本集中采样值就是该像素点过去的像素值和其邻居点的像素值,然后将每一个新的像素值和样本集进行比较来判断是否属于背景点. 2.VIBE模型初始化 通用的检测算法的初始化,需要一定长度的视频序列来完成,需要耗费数秒时间:VIBE只需要一帧图像即可.ViBe初始化就是填充像素的样本集的过程但是由于在一帧图像中不可能包含像素点的时空分布信息,我们利用了相近像素点拥有相近的时空分布特性,具体来讲就是:对于一个像素点,随机的选择它的邻居点的像素值作为它的模型…
一方面为了学习,一方面按照老师和项目的要求接触到了前景提取的相关知识,具体的方法有很多,帧差.背景减除(GMM.CodeBook. SOBS. SACON. VIBE. W4.多帧平均……).光流(稀疏光流.稠密光流).运动竞争(Motion Competition).运动模版(运动历史图像).时间熵……等等.更为具体的资料可以参考一下链接,作者做了很好的总结.点击打开链接http://blog.csdn.net/zouxy09/article/details/9622285 我只要针对作者提供…
参考:http://blog.csdn.net/zouxy09/article/details/9622285 看论文很多细节不明白,看这位博主实现的代码就能明白了.…
git:https://github.com/linyi0604/Computer-Vision import numpy as np import cv2 import matplotlib.pyplot as plt # 读入图片 img = cv2.imread("../data/mm2.jpeg") # 创建一个和加载图像一样形状的 填充为0的掩膜 mask = np.zeros(img.shape[:2], np.uint8) # 创建以0填充的前景和背景模型 bgdMode…
一.运动目标检测简介   视频中的运动目标检测这一块现在的方法实在是太多了.运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测.先简单从视频中的背景类型来讨论.        静态背景下的目标检测,就是从序列图像中将实际的变化区域和背景区分开了.在背景静止的大前提下进行运动目标检测的方法有很多,这些方法比较侧重于背景扰动小噪声的消除,如:1.背景差分法2.帧间差分法3.光流法4.混合高斯模型(GMM)5.码本(codebook)还有这些方法的变种,例如三帧…
ViBe是一种像素级的背景建模.前景检测算法,该算法主要不同之处是背景模型的更新策略,随机选择需要替换的像素的样本,随机选择邻域像素进行更新.在无法确定像素变化的模型时,随机的更新策略,在一定程度上可以模拟像素变化的不确定性. 背景模型的初始化 初始化是建立背景模型的过程,一般的检测算法需要一定长度的视频序列学习完成,影响了检测的实时性,而且当视频画面突然变化时,重新学习背景模型需要较长时间. ViBe算法主要是利用单帧视频序列初始化背景模型,对于一个像素点,结合相邻像素点拥有相近像素值的空间分…
在读研和工作之间徘徊了半年,看着一个个好友工作.保研,生活安排得井井有条,我也是时候收拾心情,整装前进了.既然选择了图像,就一定要好好做下去. 今天开始第一个算法,Vibe. ViBe是一种像素级视频背景建模或前景检测的算法,效果优于所熟知的几种算法,对硬件内存占用也少,很简单.…
ViBe是一种像素级的背景建模.前景检测算法,该算法主要不同之处是背景模型的更新策略,随机选择需要替换的像素的样本,随机选择邻域像素进行更新.在无法确定像素变化的模型时,随机的更新策略,在一定程度上可以模拟像素变化的不确定性. 背景模型的初始化 初始化是建立背景模型的过程,一般的检测算法需要一定长度的视频序列学习完成,影响了检测的实时性,而且当视频画面突然变化时,重新学习背景模型需要较长时间. ViBe算法主要是利用单帧视频序列初始化背景模型,对于一个像素点,结合相邻像素点拥有相近像素值的空间分…
转自:http://blog.csdn.net/stellar0/article/details/8777283 作者:星zai ViBe算法:ViBe - a powerful technique for background detection and subtraction in video sequences 算法官网:http://www2.ulg.ac.be/telecom/research/vibe/ 描述: ViBe是一种像素级视频背景建模或前景检测的算法,效果优于所熟知的几种算…
本文的主要内容来自2009 Advanced Video and Signal Based Surveillance会议的一篇论文“Real-Time Moving Object Detection for Video Surveillance”,要看原文内容请参考文后给出的链接.申明二点:① 本文是根据提到的论文翻译过来的,但不完全与原文相同:②代码实现部分,在detect函数部分,逻辑有问题,没达到预期的要求,勿吐槽.废话少说,下面开始来介绍该论文. 初步查阅该文献,是由于网上的一篇博文,对…
http://blog.csdn.net/zouxy09/article/category/1218765 图像卷积与滤波的一些知识点 图像卷积与滤波的一些知识点zouxy09@qq.comhttp://blog.csdn.net/zouxy09       之前在学习CNN的时候,有对卷积经常一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流.一.线性滤波与卷积的基本概念      线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果.做法很…
Pixel-Based Adaptive Segmenter(PBAS)检测算法,是基于像素的无参数模型,该算法结合了SACON和VIBE两个算法的优势,并在这两个算法的基础上改进而来,SACON和VIBE算法的介绍,请参考: [背景建模]SACON http://www.cnblogs.com/dwdxdy/p/3530862.html [背景建模]VIBE http://www.cnblogs.com/dwdxdy/p/3527891.html 创新点: 1).引入控制论的思想,使前景判断阈…
1,CodeBook的来源 先考虑平均背景的建模方法.该方法是针对每一个像素,累积若干帧的像素值,然后计算平均值和方差,以此来建立背景模型,相当于模型的每一个像素含有两个特征值,这两个特征值只是单纯的统计量,没有记录该像素值的历史起伏,即没有考虑时间序列和噪声干扰,不具备鲁棒性,因此建模时不能有运动前景的部分,要求光线保持不变. 如果我们考虑到时间起伏序列建模,比如利用60帧图像建模,对于每一个像素点会产生60个像素值,分别给他们加上60个相关的权值,或者进一步统计不同像素值出现的频次或者距离,…
Motion Detection or Moving Object Detection 称之为运动侦测,移动侦测,移动检测 MOD全称为Moving Object Detection,中文“移动物体检测”.主要的作用是泊车时,周围有人或物体经过探测区域被检测到给驾驶员声音和视觉提醒,移动物体会被黄框标示,提醒驾驶员注意.被检测到的物体必须是移动物的,它检测不到静止的物体     方法有哪些? 帧差分法(frame differencing)   Frame differencing is a t…
基于OpenCV制作道路车辆计数应用程序 发展前景 随着科学技术的进步和工业的发展,城市中交通量激增,原始的交通方式已不能满足要求:同时,由于工业发展为城市交通提供的各种交通工具越来越多,从而加速了城市交通事业的发展. 道路容量严重不足 汽车增长速度过快 公共交通日趋萎缩 交通设施条件不足 缺乏整体发展战略 交通计数应用程序是为了统计交通流量用的,对城市.或公路网络,道路的规划设计所必须的参数-交通量(当然包含比如日交通量.年交通量.日交通高峰流量等) 今天,我们将学习如何根据计算机视觉和没有复…
Emvisi2: A background subtraction algorithm, robust to sudden light changes Making Background Subtraction Robust to Sudden Illumination Change Emvisi2 是由瑞士联邦理工学院计算机实验室提出的一种背景建模算法. 转自cvchina: 看到epfl的一种前景检测算法-emvisi2,感觉效果挺不错的(video).亮点是可以处理较为剧烈的光照变化. 原…
PbModel是基于概率模型的背景差分算法,其基本思想是像素点会因光照变化.运动物体经过产生多种颜色值,但是一段时间内,像素点处于静止状态的时间会比处于运动状态的时间长.因而一段时间内,像素点某个颜色值出现的概率会高于其他颜色值,高概率的颜色值即为该像素点的背景值. 创新点 1.关注基于概率的背景模型的内存占用率和计算复杂度 基于概率的背景模型是常用的背景建模方法,但是现有一些算法,其内存占用率高,计算复杂度大. 该算法利用聚类减少内存占用率,将像素点可能出现的颜色值,按距离聚类,以聚类中心代替…
#include <iostream> #include <string> #include <opencv2/opencv.hpp> int main(int argc, char** argv) { std::string videoFile = "../test.avi"; cv::VideoCapture capture; capture.open(videoFile); if (!capture.isOpened()) { std::cou…
int main(int argc, char** argv) { //std::string videoFile = "E:\\C_VC_code\\Text_Photo\\dingdang.avi"; //cv::VideoCapture capture; //capture.open(videoFile); //VideoCapture capture("E:\\C_VC_code\\Text_Photo\\大屏互动+行人检测_标清.flv"); VideoC…
静止背景下的卡尔曼多目标跟踪 最近学习了一下多目标跟踪,看了看MathWorks的关于Motion-Based Multiple Object Tracking的Documention. 官网链接:http://cn.mathworks.com/help/vision/examples/motion-based-multiple-object-tracking.html?s_tid=gn_loc_drop 程序来自matlab的CV工具箱Computer Vision System Toolbo…
转 http://www.cnblogs.com/YangQiaoblog/p/5462453.html ==========图片版============================================================================== ===================================================================================== 最近学习了一下多目标跟踪,看了看Mat…
如前面说到的,OpenCV VS提供了6组算法的接口,分别是:前景检测.新目标检测.目标跟踪.轨迹生成.跟踪后处理.轨迹分析,除了轨迹生成用于轨迹数据的保存以外,其他5个部分都是标准的视频监控算法体系中不可或缺的部分. OpenCV在Blob_Tracking_Modules.doc文档中,提供了算法的关系图,如下. 图中唯独缺少了轨迹分析部分,可能是因为在该文档形成的时候轨迹分析部分还没有完成.重新整理后如下. 下面针对VS算法体系中的各个算法接口进行介绍,并给出算法的参考文献. 1 算法流程…