HOG算子】的更多相关文章

原地址:http://blog.csdn.net/chlele0105/article/details/11991533 梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符,它通过计算局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主.…
梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. HOG特征是一种局部区域描述符,它通过计算局部区域上的梯度方向直方图来构成人体特征,能够很好地描述人体的边缘.它对光照变…
统计手写数字集的HOG特征 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 这篇文章是模式识别的小作业,利用svm实现Minist数据集手写体识别,在这里我实现了opencv中的svm和libsvm两个版本,供大家做参考. [https://github.com/YihangLou/SVM-Minist-HandWriting-Recognition]https://github.com/YihangLou/…
一.基本HOG算法 HOG特征最早出现在SIFT算法中,由于其极强的图像特征描述能力,逐渐被人们熟知和广泛运用,其在目标检测方面表现尤为突出. HOG特征提取过程 步骤一:遍历图像每个像素点,以其为中心取8*8像素领域作为网格(block)区域: 步骤二:将网格(block)区域平均分成4个大小相等的细胞单元(cell),每个细胞单元的大小是4*4个像素: 步骤三:计算所有细胞单元(cell)中的每个像素的梯度幅值和梯度方向,梯度算子使用中心算子[1,0,-1]: 其中,H(x,y)为每个像素水…
一.概述 前面一个系列,我们对车牌识别的相关技术进行了研究,但是车牌识别相对来说还是比较简单的,后续本人会对人脸检测.人脸识别,人脸姿态估计和人眼识别做一定的学习和研究.其中人脸检测相对来说比较简单,譬如Dlib库中直接封装了现成的库函数 frontal_face_detector 供相关人员使用,但是Dlib的运行速率并不是很高,另外于仕琪老师的 libfaceDetection 库具有较高的识别率和相对较快的运行速度,具体可以从github 上获取 https://github.com/Sh…
好痛苦 1.目前思路为HOG+SVM 提取HOG时候发现,包装的lib cv2 里有hog算子,但是函数是指针形式.不会用了.. 现在改用推荐的scikits.image , from skimage import feature…
Face recognition using Histograms of Oriented Gradients 这篇论文的主要内容是将Hog算子应用到人脸识别上. 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/40757997 1. Main Contribution Extract Hog descriptors from a regular grid. Fusion of HOG descriptors at different…
http://blog.csdn.net/garfielder007/article/details/50582018 在现实生活中,我们经常会去评价一个人,长得是否漂亮.是不是帅哥美女,然而如何用五官的数据去评价一个人是否长得五官比例协调,我们却很难说出来,也就是你为什么觉得某个人长得漂亮?是因为她眼睛大,嘴巴小,还是她五官位置符合江湖传说中的黄金比例呢?我今天要讲的这篇paper的创新点就是回答了这些问题,通过这篇paper的算法,你可以找一堆非常漂亮的美女作为训练数据库,然后用于评价一个输…
本文作者任旭倩,公众号:计算机视觉life成员,由于格式原因,公式显示可能出问题,建议阅读原文链接:综述 | SLAM回环检测方法 在视觉SLAM问题中,位姿的估计往往是一个递推的过程,即由上一帧位姿解算当前帧位姿,因此其中的误差便这样一帧一帧的传递下去,也就是我们所说的累积误差.一个消除误差有效的办法是进行回环检测.回环检测判断机器人是否回到了先前经过的位置,如果检测到回环,它会把信息传递给后端进行优化处理.回环是一个比后端更加紧凑.准确的约束,这一约束条件可以形成一个拓扑一致的轨迹地图.如果…
1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. 实现:…
今天的计算机视觉课老师讲了不少内容,不过都是大概讲了下,我先记录下,细讲等以后再补充. SIFT特征: 尺度不变性:用不同参数的高斯函数作用于图像(相当于对图像进行模糊,得到不同尺度的图像),用得到的图像作差,找极值(相 当于穷举不同尺度空间的图像,找其特征点,在不同尺度下,都在极值范围之内,故能满足尺度不变性. 然后要找到极值点的位置,对其进行定位. 然后对极值进行描述. 旋转不变性:用梯度方向来表示极值点的方向,定义主方向能保证旋转不变性. 光照不变性 SIFT的特征点检测是在DOG图像上进…
1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主…
整理一下我个人觉得比较好的HOG博文 博文1:OpenCV HOGDescriptor: 参数与图解 http://blog.csdn.NET/raodotcong/article/details/6239431 博文2:opencv源码解析:各个参数讲解 http://www.cnblogs.com/tornadomeet/archive/2012/08/15/2640754.html 博文3:hog特征可视化:matlab 与 C++ http://blog.csdn.Net/u011285…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
目标检测的图像特征提取之(一)HOG特征 zouxy09@qq.com http://blog.csdn.net/zouxy09 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究…
在行为识别的iDT算法中,主要使用了HOG,HOF,MBH和Dense Trajectory四种特征.这里主要对前三者进行介绍. 1. HOG特征(histogram of gray) 此处HOG特征的介绍转载了zouxy09大神的文章  http://blog.csdn.NET/zouxy09/article/details/7929348/ 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.…
1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主…
1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检測的特征描写叙述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检測中获得了极大的成功.须要提醒的是,HOG+SVM进行行人检測的方法是法国研究人员Dalal在2005的CVPR上提出的,而现在尽管有非常多行人检測算法不断提出,但基本都是以HOG+SVM的思路为主. (…
(转载请注明出处:http://blog.csdn.net/zhazhiqiang/ 未经允许请勿用于商业用途) 一.理论 1.HOG特征描述子的定义:     locally normalised histogram of gradient orientation in dense overlapping grids,即局部归一化的梯度方向直方图,是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征.   2.本质:     Histogram of Orie…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
结合这周看的论文,我对这周研究的Histogram of oriented gradients(HOG)谈谈自己的理解: HOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检測的特征描写叙述器.这项技术是用来计算局部图像梯度的方向信息的统计值.这样的方法跟边缘方向直方图(edge orientation histograms).尺度不变特征变换(scale-invariant feature transform descriptors)以及形状上下文方法( shape c…
本文大部分内容总结于其他文章 1.介绍 HOG(Histogram of Oriented Gradient)是2005年CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集.   2.生成过程 1)图像归一化 归一化图像的主要目的是提高检测器对光照的鲁棒性,因为实际的人体目标可能…
论文转载请注明出处:http://blog.csdn.net/kezunhai 1977年,Moravec提出了兴趣点(Points of Interests)的概念,并应用于解决Stanford Cart的导航问题.1981年, Moravec在International Joint Conference on Artificial Intelligence发表了篇题为:Obstacle Avoidance and Navigation in the Real World by a Seein…
1.灰度化:(以便可以使用sobel等算子计算梯度)2.gamma校正: (降低光照影响)3.求每个像素的梯度和方向: (利用任意一种梯度算子,例如:sobel,laplacian等,对该patch进行卷积,计算得到每个像素点处的梯度方向和幅值.具体公式如下: )4.划分cell(x*x pixel/cell),根据幅值和方向求取每个cell的梯度直方图: (将梯度方向分成若干离散等分,将所有梯度方向映射到梯度直方图,直方图取值由对应方向的梯度幅值累加得到)5.组合block(y*y cell/…
最近在做的项目有用到HOG+SVM这一方面的知识,参考相关论文和网上一些博文在此对HOG特征进行下总结. 参考资料: HOG的经典论文:Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005,…
HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主要思…
Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了.那么,接下来介绍一下HOG的具体原理和计算方法,以及一些引申. 1.分割图像 因为HOG是一个局部特征,因此如果你对一大幅图片直接提取特征,是得不到好的效果的.原理很简单.从信息论角…
[普兒原创, 如有错误和纰漏欢迎指正. 更新中...] 1. 颜色直方图 颜色空间在本质上是定义在某种坐标系统下的子空间,空间中的每一个坐标表示一种不同的颜色.颜色空间的目的在于给出某种颜色标准,使得不同的设备和用途都能对颜色有一致的描述.这里主要介绍两种不同的颜色空间,包括RGB颜色空间和CIE-Lab颜色空间,如图4-2所示. (a)RGB颜色空间; (b)CIE-Lab颜色空间 图1 颜色空间示意图 RGB颜色空间是定义在三维笛卡尔坐标系中的颜色模型,每一种颜色定义在3个主颜色分量红(R)…
SIFT :scale invariant feature transform HOG:histogram of oriented gradients 这两种方法都是基于图像中梯度的方向直方图的特征提取方法. 1. SIFT 特征  实现方法: SIFT 特征通常与使用SIFT检测器得到的感兴趣点一起使用.这些感兴趣点与一个特定的方向和尺度(scale)相关联.通常是在对一个图像中的方形区域通过相应的方向和尺度变换后,再计算该区域的SIFT特征. 首先计算梯度方向和幅值(使用Canny边缘算子在…
本文翻译自 SATYA MALLICK 的 "Histogram of Oriented Gradients" 原文链接: https://www.learnopencv.com/histogram-of-oriented-gradients/ 翻译:coneypo 在这篇文章中,我们将会学习 HOG (Histogram of Oriented Gradients,方向梯度直方图)特征描述子 的详细内容. 我们将学习 HOG 算法是如何实现的,以及在 OpenCv / MATLAB…