目录 概 主要内容 代码 Foret P., Kleiner A., Mobahi H., Neyshabur B. Sharpness-aware minimization for efficiently improving generalization. In International Conference on Learning Representations. 概 在训练的时候对权重加扰动能增强泛化性. 主要内容 如上图所示, 一般的训练方法虽然能够收敛到一个不错的局部最优点, 但是往…
CVPR 2020 共收录 1470篇文章,根据当前的公布情况,人工智能学社整理了以下约100篇,分享给读者. 代码开源情况:详见每篇注释,当前共15篇开源.(持续更新中,可关注了解). 算法主要领域:图像与视频处理,图像分类&检测&分割.视觉目标跟踪.视频内容分析.人体姿态估计.模型加速.网络架构搜索(NAS).生成对抗(GAN).光学字符识别(OCR).人脸识别.三维重建等方向. 目录如下: 总目录 图像处理 Deep Image Harmonization via Domain Ve…
CVPR 2020 共收录 1470篇文章,根据当前的公布情况,人工智能学社整理了以下约100篇,分享给读者. 代码开源情况:详见每篇注释,当前共15篇开源.(持续更新中,可关注了解). 算法主要领域:图像与视频处理,图像分类&检测&分割.视觉目标跟踪.视频内容分析.人体姿态估计.模型加速.网络架构搜索(NAS).生成对抗(GAN).光学字符识别(OCR).人脸识别.三维重建等方向. 目录如下: # 总目录 # 图像处理 1. Deep Image Harmonization via Do…
自动调参的Adam方法已经非常给力了,不过这主要流行于工程界,在大多数科学实验室中,模型调参依然使用了传统的SGD方法,在SGD基础上增加各类学习率的主动控制,以达到对复杂模型的精细调参,以达到刷出最高的分数. ICLR会议的 On the convergence of Adam and Beyond 论文,对Adam算法进行了 猛烈的抨击,并提出了新的Adam算法变体. 以前的文章:最优化方法之GD.SGD :最优化之回归/拟合方法总结:最优化方法之SGD.Adams: 参考文章:GD优化算法…
目录 故事背景 建模现实噪声 CBDNet 非对称损失 数据库 实验 发表在2019 CVPR. 摘要 While deep convolutional neural networks (CNNs) have achieved impressive success in image denoising with additive white Gaussian noise (AWGN), their performance remains limited on real-world noisy p…
先睹为快:神经网络顶会ICLR 2019论文热点分析 - lqfarmer的文章 - 知乎 https://zhuanlan.zhihu.com/p/53011934 作者:lqfarmer链接:https://zhuanlan.zhihu.com/p/53011934来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. ICLR-2019(International Conference on Learning Representations 2019),将于2019…
首先定义:待优化参数:  ,目标函数: ,初始学习率 . 而后,开始进行迭代优化.在每个epoch  : 计算目标函数关于当前参数的梯度:  根据历史梯度计算一阶动量和二阶动量:, 计算当前时刻的下降梯度:  根据下降梯度进行更新:  掌握了这个框架,你可以轻轻松松设计自己的优化算法. 一阶动量.二阶动量概念的引入,一个框架纳入所有优化算法,更清晰 一个框架看懂优化算法之异同 SGD/AdaGrad/Adam Adam那么棒,为什么还对SGD念念不忘 (1) —— 一个框架看懂优化算法 机器学习…
优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam) 2019年05月29日 01:07:50 糖葫芦君 阅读数 455更多 分类专栏: 算法 深度学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/yinyu19950811/article/details/90476956 文章目录 优化方法概述 1.整体…
SWATS算法剖析(自动切换adam与sgd) 战歌指挥官 搬砖.码砖.代查水表.... 27 人赞同了该文章 SWATS是ICLR在2018的高分论文,提出的一种自动由Adam切换为SGD而实现更好的泛化性能的方法. 论文名为Improving Generalization Performance by Switching from Adam to SGD,下载地址为:https://arxiv.org/abs/1712.07628. 作者指出,基于历史梯度平方的滑动平均值的如adam等算法并…
https://blog.csdn.net/wishchin/article/details/80567558 自动调参的Adam方法已经非常给力了,不过这主要流行于工程界,在大多数科学实验室中,模型调参依然使用了传统的SGD方法,在SGD基础上增加各类学习率的主动控制,以达到对复杂模型的精细调参,以达到刷出最高的分数. ICLR会议的 On the convergence of Adam and Beyond 论文,对Adam算法进行了 猛烈的抨击,并提出了新的Adam算法变体. 以前的文章:…
在前面两篇文章中,我们用一个框架梳理了各大优化算法,并且指出了以Adam为代表的自适应学习率优化算法可能存在的问题.那么,在实践中我们应该如何选择呢? 本文介绍Adam+SGD的组合策略,以及一些比较有用的tricks. 回顾前文: Adam那么棒,为什么还对SGD念念不忘 (1) Adam那么棒,为什么还对SGD念念不忘 (2) 不同优化算法的核心差异:下降方向 从第一篇的框架中我们看到,不同优化算法最核心的区别,就是第三步所执行的下降方向: 这个式子中,前半部分是实际的学习率(也即下降步长)…
在上篇文章中,我们用一个框架来回顾了主流的深度学习优化算法.可以看到,一代又一代的研究者们为了我们能炼(xun)好(hao)金(mo)丹(xing)可谓是煞费苦心.从理论上看,一代更比一代完善,Adam/Nadam已经登峰造极了,为什么大家还是不忘初心SGD呢? 举个栗子.很多年以前,摄影离普罗大众非常遥远.十年前,傻瓜相机开始风靡,游客几乎人手一个.智能手机出现以后,摄影更是走进千家万户,手机随手一拍,前后两千万,照亮你的美(咦,这是什么乱七八糟的).但是专业摄影师还是喜欢用单反,孜孜不倦地调…
梯度中心化GC对权值梯度进行零均值化,能够使得网络的训练更加稳定,并且能提高网络的泛化能力,算法思路简单,论文的理论分析十分充分,能够很好地解释GC的作用原理   来源:晓飞的算法工程笔记 公众号 论文: Gradient Centralization: A New Optimization Technique for Deep Neural Networks 论文地址:https://arxiv.org/abs/2004.01461 论文代码:https://github.com/Yongho…
About this Course This course will teach you the "magic" of getting deep learning to work well. Rather than the deep learning process being a black box, you will understand what drives performance, and be able to more systematically get good res…
https://msdn.microsoft.com/en-us/library/ff647787.aspx Retired Content This content is outdated and is no longer being maintained. It is provided as a courtesy for individuals who are still using these technologies. This page may contain URLs that we…
Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, Ping Tak Peter Tang Northwestern University & Intel code: https://github.com/keskarnitish/large-batch-training * SGD及其变种在batch size增大的时候会有泛化能力的明显下降 generalization drop/deg…
When a golf player is first learning to play golf, they usually spend most of their time developing a basic swing. Only gradually do they develop other shots, learning to chip, draw and fade the ball, building on and modifying their basic swing. In a…
1.别人的说法 转自:http://www.cnblogs.com/shinings/archive/2009/04/21/1440765.html 共性:都是从现有的用例中抽取出公共的那部分信息,作为一个单独的用例,然后通后过不同的方法来重用这个公共的用例,以减少模型维护的工作量. 1.包含(include) 包含关系:使用包含(Inclusion)用例来封装一组跨越多个用例的相似动作(行为片断),以便多个基(Base)用例复用.基用例控制与包含用例的 关系,以及被包含用例的事件流是否会插入到…
In this Document   Purpose   Scope   Details   A) Database Init.ora Parameters   B) Concurrent Program Controls setup   C) General Ledger Optimizer program   C.1) To create and drop indexes for your chart of accounts segments:   C.2) To update statis…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help…
GANs and Divergence Minimization 2018-12-22 09:38:27     This blog is copied from: https://colinraffel.com/blog/gans-and-divergence-minimization.html      This post discusses a perspective on GANs which is not new but I think is often overlooked. I'l…
Improving Web App Performance With the Chrome DevTools Timeline and Profiles We all want to create high performance web applications. As our apps get more complex, we may want to support rich animations and that ideal 60 frames a second that keep our…
BACKGROUND Computer viruses are a common problem for computer users. One typical mode of attack is to send an electronic mail message (e-mail) containing a file attachment to an unsuspecting user's computer. The file attachment contains malicious att…
Spectral Norm Regularization for Improving the Generalizability of Deep Learning论文笔记 2018年12月03日 00:03:07 RRZS 阅读数 153更多 分类专栏: 深度学习 cv   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/beyondjv610/article/details/8472247…
目录 摘要部分: I. Introduction 介绍 II. Background 背景 A. Collision Avoidance with DRL B. Characterization of Social Norms III. Approach 方法 A. Inducing Social Norms 前言: 摘要部分: For robotic vehicles to navigate safely and efficiently in pedestrian-rich environme…
目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chiang M. and Mittal P. Improving adversarial robustness using proxy Distributions. arXiv preprint arXiv: 2104.09425, 2021. 概 本文利用GAN生成数据, 并利用这些数据进行对抗训练,…
一.spring容器中的aware接口介绍 Spring中提供了各种Aware接口,比较常见的如BeanFactoryAware,BeanNameAware,ApplicationContextAware,BeanClassLoaderAware等,方便从上下文中获取当前的运行环境.我们先从使用的角度来说明aware接口的使用方式,举例如我们想得到当前的BeanFactory,我们可以让我们的实现类继承BeanFactoryAware接口,然后通过接口注入的方式得到当前容器中的BeanFacto…
Poor Generalization 这可能是实际中遇到的最多问题. 比如FC网络为什么效果比CNN差那么多啊,是不是陷入局部最小值啊?是不是过拟合啊?是不是欠拟合啊? 在操场跑步的时候,又从SVM角度思考了一下,我认为Poor Generalization属于过拟合范畴. 与我的论文 [深度神经网络在面部情感分析系统中的应用与改良] 的观点一致. SVM ImageNet 2012上出现了一个经典虐杀场景.见[知乎专栏] 里面有一段这么说道: 当时,大多数的研究小组还都在用传统compute…
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing co-adaptation of feature detectors” 感觉没什么好说的了,该说的在引用的这两篇博客里已经说得很清楚了,直接做试验吧 注意: 1.在模型的测试阶段,使用”mean network(均值网络)”来得到隐含层的输出,其实就是在网络前向传播到输出层前时隐含层节点的输出值都…
http://developer.android.com/training/displaying-bitmaps/index.html .手机内存资源有限 .Bitmap占用的内存大 .App有时需要同时加载多张bitmap到内存 一张 2592x1936 的照片,在默认 ARGB_8888 的情况下,占用的内存: 19MB (2592*1936*4 bytes) 1.图片内存占用的计算 android 3.1之前 (level 12): int bytes = bmp.getRowBytes(…