了解Spark】的更多相关文章

[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) 1.5 preferedLocations(优先分配节点列表) 2.RDD实现类举例 2.1 MapPartitionsRDD 2.2 ShuffledRDD 2.3 ReliableCheckpointRDD 3.RDD可以嵌套吗? 内容: 1.RDD的五大属性 1.1partitions(分区…
最近迷上了spark,写一个专门处理语料库生成词库的项目拿来练练手, github地址:https://github.com/LiuRoy/spark_splitter.代码实现参考wordmaker项目,有兴趣的可以看一下,此项目用到了不少很tricky的技巧提升性能,单纯只想看懂源代码可以参考wordmaker作者的一份简单版代码. 这个项目统计语料库的结果和执行速度都还不错,但缺点也很明显,只能处理GBK编码的文档,而且不能分布式运行,刚好最近在接触spark,所以用python实现了里面…
个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Spark,在执行以下步骤之前,请先确保已经安装Hadoop集群,Hive,MySQL,JDK,Scala,具体安装步骤不再赘述. 背景 Hive默认使用MapReduce作为执行引擎,即Hive on mr.实际上,Hive还可以使用Tez和Spark作为其执行引擎,分别为Hive on Tez和Hi…
[TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streaming进行实时的数据流处理时,我需要将计算好的数据更新到hbase和mysql中,所以本文对spark操作hbase和mysql的内容进行总结,并且对自己踩到的一些坑进行记录. Spark Streaming持久化设计模式 DStreams输出操作 print:打印driver结点上每个Dstream…
[TOC] Spark简介 整体认识 Apache Spark是一个围绕速度.易用性和复杂分析构建的大数据处理框架.最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一. Spark在整个大数据系统中处于中间偏上层的地位,如下图,对hadoop起到了补充作用: 基本概念 Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 第一步分割任务.首先我们需…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 一.传统方式 这种方式就是常用的TableInputFormat和TableOutputFormat来读写hbase,如下代码所示 简单解释下,用sc.newAPIHadoopRDD根据conf中配置好的scan来从Hbase的数据列族中读取包含(ImmutableBytesWritable, Result)的RDD, 随后取出rowkey和value的键值对儿利用StatCounter进行一…
一.Spark简介: 以下是百度百科对Spark的介绍: Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载. Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架.与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集…
Spark是一个内存迭代式运算框架,通过RDD来描述数据从哪里来,数据用那个算子计算,计算完的数据保存到哪里,RDD之间的依赖关系.他只是一个运算框架,和storm一样只做运算,不做存储. Spark程序可以运行在Yarn.standalone.mesos等平台上,standalone是Spark提供的一个分布式运行平台,分为master和worker两个角色. Standalone模式安装:只要修改一个文件即可 Spark-env.sh为: (master没有做HA) #指定JAVA_HOME…
Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark Streaming.MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台. Spark使用Scala语言实现,…
Spark是现在应用最广泛的分布式计算框架,oozie支持在它的调度中执行spark.在我的日常工作中,一部分工作就是基于oozie维护好每天的spark离线任务,合理的设计工作流并分配适合的参数对于spark的稳定运行十分重要. Spark Action 这个Action允许执行spark任务,需要用户指定job-tracker以及name-node.先看看语法规则: 语法规则 <workflow-app name="[WF-DEF-NAME]" xmlns="uri…
没用过IDEA工具,听说跟Eclipse差不多,sbt在Idea其实就等于maven在Eclipse.Spark运行在JVM中,所以要在Idea下运行spark,就先要安装JDK 1.8+ 然后加入Scala和Spark的依赖包就可以进行开发了,不要安装低版本的JDK. 先下载Idea的社区版 https://www.jetbrains.com/idea/download/download-thanks.html?platform=windows&code=IIC Scala.Spark环境 安…
在前一篇文章中,我们已经搭建好了Hadoop的群集,接下来,我们就是需要基于这个Hadoop群集,搭建Spark的群集.由于前面已经做了大量的工作,所以接下来搭建Spark会简单很多. 首先打开三个虚拟机,现在我们需要安装Scala,因为Spark是基于Scala开发的,所以需要安装Scala.在Ubuntu下安装Scala很简单,我们只需要运行 sudo apt-get install scala 就可以安装Scala了. 安装完成后运行scala -version可以看到安装的Scala的版…
初识spark,需要对其API有熟悉的了解才能方便开发上层应用.本文用图形的方式直观表达相关API的工作特点,并提供了解新的API接口使用的方法.例子代码全部使用python实现. 1. 数据源准备 准备输入文件: $ cat /tmp/in apple bag bag cat cat cat 启动pyspark: $ ./spark/bin/pyspark 使用textFile创建RDD: >>> txt = sc.textFile("file:///tmp/in"…
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些…
在即时通信这个领域目前只找到一个XMPP协议,在其协议基础上还是有许多成熟的产品,而且是开源的.所以还是想在这个领域多多了解一下. XMPP协议:具体的概念我就不写了,毕竟这东西网上到处是.简单的说就是基于XML的一种协议.其解决了什么问题呢?就是给即时通讯制定了标准,大家只要遵守标准就可以完成即时通信的功能.有了标准的好处就是可以有各种不同的实现,大家在这个标准上发展自己的特长.而且还给即时通信提供了互联互通的基础.XMPP协议据网上说还是比较优秀的,表现就是google等大公司都在自己的即时…
本篇接着谈谈那些稍微复杂的API. 1)   flatMapValues:针对Pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键的键值对记录 这个方法我最开始接触时候,总是感觉很诧异,不是太理解,现在回想起来主要原因是我接触的第一个flatMapValues的例子是这样的,代码如下: val rddPair: RDD[(String, Int)] = sc.parallelize(List(("x01", 2), ("x02"…
本篇接着讲解RDD的API,讲解那些不是很容易理解的API,同时本篇文章还将展示如何将外部的函数引入到RDD的API里使用,最后通过对RDD的API深入学习,我们还讲讲一些和RDD开发相关的scala语法. 1)  aggregate(zeroValue)(seqOp,combOp)  该函数的功能和reduce函数一样,也是对数据进行聚合操作,不过aggregate可以返回和原RDD不同的数据类型,使用时候还要提供初始值. 我们来看看下面的用法,代码如下: val rddInt: RDD[In…
上一篇里我提到可以把RDD当作一个数组,这样我们在学习spark的API时候很多问题就能很好理解了.上篇文章里的API也都是基于RDD是数组的数据模型而进行操作的. Spark是一个计算框架,是对mapreduce计算框架的改进,mapreduce计算框架是基于键值对也就是map的形式,之所以使用键值对是人们发现世界上大部分计算都可以使用map这样的简单计算模型进行计算.但是Spark里的计算模型却是数组形式,RDD如何处理Map的数据格式了?本篇文章就主要讲解RDD是如何处理Map的数据格式.…
本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当作一个数组,这样的理解对我们学习RDD的API是非常有帮助的.本文所有示例代码都是使用scala语言编写的. Spark里的计算都是操作RDD进行,那么学习RDD的第一个问题就是如何构建RDD,构建RDD从数据来源角度分为两类:第一类是从内存里直接读取数据,第二类就是从文件系统里读取,当然这里的文件…
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuffleManager 2 Shuffle操作问题解决 2.1 数据倾斜原理 2.2 数据倾斜问题发现与解决 2.3 数据倾斜解决方案 3 spark RDD中的shuffle算子 3.1 去重 3.2 聚合 3.3 排序 3.4 重分区 3.5 集合操作和表操作 4 spark shuffle参数调优…
PairRDDFunctions类提供了以下两个join接口,只提供一个参数,不指定分区函数时默认使用HashPartitioner;提供numPartitions参数时,其内部的分区函数是HashPartitioner(numPartitions) def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = self.withScope { //这里的defaultPartitioner 就是HashPartitioner,如果指定了HashPart…
摘要: 1.spark_core 2.spark_sql 3.spark_ml 内容: 1.spark_core 原理篇: Spark RDD 核心总结 RangePartitioner 实现简记 Spark核心作业调度和任务调度之DAGScheduler源码 Spark 运行架构核心总结 Spark DAGSheduler生成Stage过程分析实验 Spark join 源码跟读记录 图解spark的RDD编程模型 (收藏用) 实战篇: Spark算子选择策略 Spark的持久化简记 Spar…
前言:本文是我学习Spark 源码与内部原理用,同时也希望能给新手一些帮助,入道不深,如有遗漏或错误的,请在原文评论或者发送至我的邮箱 tongzhenguotongzhenguo@gmail.com 摘要: 1.作业调度核心--DAGScheduler 2.DAGScheduler类说明 2.1DAGScheduler 2.2ActiveJob 2.3Stage 2.4Task 3.工作流程 3.1划分Stage 3.2生成Job,提交Stage 3.3任务集的提交 3.4任务作业完成状态的监…
摘要: 1.基本术语 2.运行架构 2.1基本架构 2.2运行流程  2.3相关的UML类图  2.4调度模块: 2.4.1作业调度简介 2.4.2任务调度简介 3.运行模式 3.1 standalone模式 4.RDD实战 总结: 基本术语: Application:在Spark 上建立的用户程序,一个程序由一个驱动程序(Driver Program)和集群中的执行进程(Executer)构成. Driver Program:运行应用程序(Application)的main函数和创建Spark…
1.StackOverflowError 问题:简单代码记录 : for (day <- days){ rdd = rdd.union(sc.textFile(/path/to/day) .... ) } 大概场景就是我想把数量比较多的文件合并成一个大rdd,从而导致了栈溢出: 解决:很明显是方法递归调用太多,我之后改成了几个小任务进行了合并:这里union也可能会造成最终rdd分区数过多 2.java.io.FileNotFoundException: /tmp/spark-90507c1d-…
摘要: 随着大数据技术的发展,实时流计算.机器学习.图计算等领域成为较热的研究方向,而Spark作为大数据处理的“利器”有着较为成熟的生态圈,能够一站式解决类似场景的问题.那你知道Spark生态系统有哪些组件吗?下面让我们跟着本文一同了解下这些不可或缺的组件.本文选自<图解Spark:核心技术与案例实战> Spark 生态系统以Spark Core 为核心,能够读取传统文件(如文本文件).HDFS.Amazon S3.Alluxio 和NoSQL 等数据源,利用Standalone.YARN…
Storm介绍 Storm是由Twitter开源的分布式.高容错的实时处理系统,它的出现令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求.Storm常用于在实时分析.在线机器学习.持续计算.分布式远程调用和ETL等领域. 在Storm的集群里面有两种节点:控制节点(Master Node)和工作节点(Worker Node).控制节点上面运行一个名为Nimbus的进程,它用于资源分配和状态监控:每个工作节点上面运行一个Supervisor的进程,它会监听分配给它所在机器的…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 大家都知道用mapreduce或者spark写入已知的hbase中的表时,直接在mapreduce或者spark的driver class中声明如下代码 job.getConfiguration().set(TableOutputFormat.OUTPUT_TABLE, tablename); 随后mapreduce在mapper或者reducer中直接context写入即可,而spark则是…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 SparkSQL这块儿从1.4开始支持了很多的窗口分析函数,像row_number这些,平时写程序加载数据后用SQLContext 能够很方便实现很多分析和查询,如下 val sqlContext = new SQLContext(sc) sqlContext.sql("select -.") 然而我看到Spark后续版本的DataFrame功能很强大,想试试使用这种方式来实现比如r…