前言 这道题目本身毫无技术含量珂言,但是输出格式珂以调一年 题解 这道题让我们求\(N!\)中每个质数的个数. 一种方法是直接模拟,枚举\(N!\)中的每个元素,然后暴力查看每个数含有有多少质数. 但是这里我采用了另一种方法,我们知道每个质数对答案的贡献由\(p,p^2,p^2,\dots,p^n\)决定,例如如果是5的阶乘,质数2在2,4中出现了2次,贡献为2,但是实际上\(4\ mod\ 2^2=0\)也就是说,\(2^2\)对答案也产生了贡献,那么这个算法就暴力枚举次方数,然后除法操作直接…