NVIDIA GPU自动调度神经网络】的更多相关文章

NVIDIA GPU自动调度神经网络 对特定设备和工作负载进行自动调整对于获得最佳性能至关重要.这是有关如何使用自动调度器为NVIDIA GPU调整整个神经网络. 为了自动调整神经网络,将网络划分为小的子图,并对其进行独立调整.每个子图被视为一个搜索任务.任务调度程序可以对时间进行分片,并为这些任务动态分配时间资源.任务调度程序可以预测每个任务对端到端执行时间的影响,确定可以最大程度地减少执行时间的任务的优先级. 对于每个子图,使用compute声明tvm/python/topi获取张量表达式形…
GPU自动调度卷积层 本文对GPU使用自动调度程序. 与依靠手动模板定义搜索空间的基于模板的autotvm不同,自动调度程序不需要任何模板.用户只需要编写计算声明,无需任何调度命令或模板.自动调度程序可以自动生成一个较大的搜索空间,在该空间中找到良好的调度. 本文以卷积层为例. 本文无法在Windows或最新版本的macOS上运行.要使其运行,需要将本文的内容包装在一个if __name__ == "__main__":块中. import os import numpy as np…
ARM CPU自动调度神经网络 对特定设备和工作负载进行自动调度,对于获得最佳性能至关重要.通过RPC使用自动调度器为ARM CPU调度整个神经网络. 为了自动调度神经网络,将网络划分为小的子图,进行独立调度.每个子图被视为一个搜索任务.任务调度程序对时间进行分片,为这些任务动态分配时间资源.任务调度程序预测每个任务对端到端执行时间的影响,确定最大程度地减少执行时间的任务的优先级. 对于每个子图,使用compute声明tvm/python/topi,获取张量表达式形式的计算DAG.使用自动调度器…
为x86 CPU自动调度神经网络 对特定设备和工作负载进行自动调试对于获得最佳性能至关重要.这是有关如何使用自动调度器为x86 CPU调试整个神经网络的文档. 为了自动调试神经网络,将网络划分为小的子图,并对其进行独立调试.每个子图被视为一个搜索任务.任务调度程序可以对时间进行分片,并为这些任务动态分配时间资源.任务调度程序可以预测每个任务对端到端执行时间的影响,并优先调度可以最大程度地减少执行时间的任务. 对于每个子图,使用compute声明tvm/python/topi获取张量表达式形式的计…
NVIDIA GPU的神经网络自动调度 针对特定设备和工作负载的自动调整对于获得最佳性能至关重要.这是一个关于如何使用自动调度器为NVIDIA GPU调整整个神经网络的资料. 为了自动调整一个神经网络,将网络划分成小的子图并独立地进行调整.每个子图被视为一个搜索任务.任务调度器对时间进行切片,并动态地为这些任务分配时间资源.任务调度器预测每个任务对端到端执行时间的影响,并对最能缩短执行时间的任务进行优先级排序. 对于每个子图,使用tvm/python/topi中的compute声明来获得张量表达…
NVIDIA GPU卷积网络的自动调谐 针对特定设备和工作负载的自动调整对于获得最佳性能至关重要.这是关于如何为NVIDIA GPU调整整个卷积网络. NVIDIA GPU在TVM中的操作实现是以模板形式编写的.模板有许多可调旋钮(平铺系数.展开等).将调整神经网络中的所有卷积和深度卷积算子.在调优之后,生成一个日志文件,其中存储了所有所需操作符的最佳旋钮值.当TVM编译器编译这些运算符时,它将查询此日志文件以获得最佳的旋钮值. 还发布了一些NVIDIA GPU的预调参数.可以去NVIDIA G…
自动调度GPU的卷积层 这是有关如何对GPU使用自动调度程序的文档. 与依靠手动模板定义搜索空间的基于模板的autotvm不同,自动调度程序不需要任何模板.用户只需要编写计算声明,而无需任何调度命令或模板.自动调度程序可以自动生成较大的搜索空间,并在该空间中找到良好的调度. 本文以卷积层为例. 注意,本文无法在Windows或最新版本的macOS上运行.要使其运行,需要将本文的内容包装在一个if __name__ == "__main__":块中. import os   import…
TVM自动调度器 随着模型大小,算子多样性和硬件异构性的不断增长,优化深度神经网络的执行速度非常困难.从计算的角度来看,深度神经网络只是张量计算的一层又一层.这些张量计算(例如matmul和conv2d)可以通过数学表达式轻松描述.在现代硬件上为其提供高性能的实现可能会非常具有挑战性.必须应用各种低级优化,利用特殊的硬件内在函数来实现高性能.建立线性代数和神经网络加速库(如CuBLAS,CuDNN,oneMKL和oneDNN)需要大量的工程工作. 如果可以编写数学表达式,将其神奇地转化为有效的代…
根据 Gartner 对全球 CIO 的调查结果显示,人工智能将成为 2019 年组织革命的颠覆性力量.对于人工智能来说,算力即正义,成本即能力,利用 Docker 和 Kubernetes 代表云原生技术为 AI 提供了一种新的工作模式,将 GPU 机器放到统一的资源池进行调度和管理,这避免了GPU 资源利用率低下和人工管理的成本.因此,全球主要的容器集群服务厂商 Kubernetes 都提供了 Nvidia GPU 容器集群调度能力,但是通常都是将一个 GPU 卡分配给一个容器.这虽然可以实…
NVIDIA GPU Pascal架构简述 本文摘抄自英伟达Pascal架构官方白皮书:https://www.nvidia.com/en-us/data-center/resources/pascal-architecture-whitepaper/ SM 相比Maxwell架构,Pascal架构改进了16-nm FinFET的制造工艺,并提供了各种其它架构改进. Pascal further improves the already excellent power efficiency pr…