softmax回归推导】的更多相关文章

向量\(y\)(为one-hot编码,只有一个值为1,其他的值为0)真实类别标签(维度为\(m\),表示有\(m\)类别): \[y=\begin{bmatrix}y_1\\ y_2\\ ...\\y_m\end{bmatrix} \] 向量\(z\)为softmax函数的输入,和标签向量\(y\)的维度一样,为\(m\): \[z=\begin{bmatrix}z_1\\ z_2\\ ...\\z_m\end{bmatrix} \] 向量\(s\)为softmax函数的输出,和标签向量\(y\…
http://www.cnblogs.com/Deep-Learning/p/7073744.html http://www.cnblogs.com/lutingting/p/4768882.html http://chenrudan.github.io/blog/2016/01/09/logisticregression.html http://www.cnblogs.com/Determined22/p/6362951.html http://blog.csdn.net/pandav5/ar…
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细推导. 1. 详细推导softmax代价函数的梯度 经典的logistics回归是二分类问题,输入向量$ x^{(i)}\in\Re^{n+1}$ 输出0,1判断\(y^{(i)}\in{\{0,1\}}\),Softmax回归模型是一种多分类算法模型,如图所示,输出包含k个类型,\(y^{(i)}\in{\…
Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutorial/logreg.html 起源:Logistic的二类分类 Softmax回归是Logistic回归的泛化版本,用于解决线性多类(K类)的分类问题. Logistic回归可以看作是Softmax回归在K=2时的特例.Softmax函数即是K分类版的Logistc函数. 裸Softmax回归的效…
转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件3类,目标值y是一个有3个取值的离散值.这是一个多分类问题,二分类模型在这里不太适用. 多分类问题符合多项分布.有许多算法可用于解决多分类问题,像决策树.朴素贝叶斯等.这篇文章主要讲解多分类算法中的Softmax回归(Softmax Regression) 推导思路为:首先证明多项分布属于指数分布族…
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson Regression) 在生活中,经常会遇到一类问题需要对一段时间内某一小概率事件的发生次数建模,例如癌症.火灾等. 假设向量x表示引起这一事件发生的因素,向量θ表示因素的权重,则使用hθ(x)=exp(θTx)表示事件发生次数的期望.θTx位于指数位置,意味着其每增加1个单位,将导至事件发生次数的期望值翻…
考虑一个多分类问题,即预测变量y可以取k个离散值中的任何一个.比如一个邮件分类系统将邮件分为私人邮件,工作邮件和垃圾邮件.由于y仍然是一个离散值,只是相对于二分类的逻辑回归多了一些类别.下面将根据多项式分布建模. 考虑将样本共有k类,每一类的概率分别为,由于,所以通常我们只需要k-1个参数即可 , 为了推导,引入表达式: 上面T(y)是k-1维列向量,其中y = 1, 2, ...k. T(y)i 表示向量T(y)的第i个元素. 还要引入表达式 ,如果大括号里面为真,则真个表达式就为1,否则为0…
关于Andrew Ng的machine learning课程中,有一章专门讲解逻辑回归(Logistic回归),具体课程笔记见另一篇文章. 下面,对Logistic回归做一个简单的小结: 给定一个待分类样本x,利用Logistic回归模型判断该输入样本的类别,需要做的就是如下两步: ① 计算逻辑回归假设函数的取值hθ(x),其中n是样本的特征维度 ② 如果hθ(x)>=0.5,则x输入正类,否则,x属于负类 或者直接利用判别边界进行判断,即:如果θ'x>=0,则x输入正类,否则,x属于负类 所…
一.Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型. 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类,则因变量y∈{0, 1},其中0表示负类,1表示正类.线性回归的输出值在负无穷到正无穷的范围上,不太好解决这个问题.于是我们引入非线性变换,把线性回归的输出值压缩到(0, 1)之间,那就成了Logistic回归,使得≥0.5时,预测y=1,而当<0.5时,预测y=0.Logistic回归的名字中尽管…