BP神经网络及异或实现】的更多相关文章

BP神经网络是最简单的神经网络模型了,三层能够模拟非线性函数效果. 难点: 如何确定初始化参数? 如何确定隐含层节点数量? 迭代多少次?如何更快收敛? 如何获得全局最优解? ''' neural networks created on 2019.9.24 author: vince ''' import math import logging import numpy import random import matplotlib.pyplot as plt ''' neural network…
反向传播算法(Back Propagation)分二步进行,即正向传播和反向传播.这两个过程简述如下: 1.正向传播 输入的样本从输入层经过隐单元一层一层进行处理,传向输出层:在逐层处理的过程中.在输出层把当前输出和期望输出进行比较,如果现行输出不等于期望输出,则进入反向传播过程. 2.反向传播 反向传播时,把误差信号按原来正向传播的通路反向传回,逐层修改连接权值,以望代价函数趋向最小. 下面以单隐层的神经网络为例,进行权值调整的公式推导,其结构示意图如下: 输入层输入向量(n维):X=(x1,…
[废话外传]:终于要讲神经网络了,这个让我踏进机器学习大门,让我读研,改变我人生命运的四个字!话说那么一天,我在乱点百度,看到了这样的内容: 看到这么高大上,这么牛逼的定义,怎么能不让我这个技术宅男心向往之?现在入坑之后就是下面的表情: 好了好了,玩笑就开到这里,其实我是真的很喜欢这门学科,要不喜欢,老子早考公务员,找事业单位去了,还在这里陪你们牛逼打诨?写博客,吹逼? 1神经网络历史(本章来自维基百科,看过的自行跳过) 沃伦·麦卡洛克)[基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算…
1.BP神经网络训练过程论述 BP网络结构有3层:输入层.隐含层.输出层,如图1所示. 图1 三层BP网络结构 3层BP神经网络学习训练过程主要由4部分组成:输入模式顺传播(输入模式由输入层经隐含层向输出层传播计算).输出误差逆传播(输出的误差由输出层经隐含层传向输入层).循环记忆训练(模式顺序传播与误差逆传播的计算过程反复交替循环进行)和学习结果判别(判定全局误差是否趋向极小值). 下面具体介绍和分析用梯度下降法训练BP神经网络,在第1次输入样品(1=1,2,--,N)进行训练时各个 参数的表…
上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能.由这些人工神经元构建出来的网络,才能够具有学习.联想.记忆和模式识别的能力.BP网络就是一种简单的人工神经网络.我们的第二话就从BP神经网络开始漫谈吧. BP的来源 “时势造英雄”,一个伟大的人物的登场总是建立在历史的需求之下,所以我们剖析一个人,得先看看他的出身时代.同样的道理,在讲BP网络的特性和用途之前,我们需要先了解一下它的来源和诞生原因,以便理解它的重要性. 1.1 最简单的神经网络结构——感…
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体应用与研究 9 结论 11 参考文献 12 1 贝叶斯网络在地学中的应用 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础.贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayes…
人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善. 联想大家熟悉的回归问题, 神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数, 并使用该函数进行预测, 网络的训练过程即为调节该函数参数提高预测精度的过程.神经网络要解决的问题与最小二乘法回归解决的问题并无根本性区别. 回归和分类是常用神经网络处理的两类问题, 如果你已经了解了神经网络的工作原理可以在http://playground.tensorflow.org/上体验一个浅层神经网络的工作过程. 感…
机器学习中,神经网络算法可以说是当下使用的最广泛的算法.神经网络的结构模仿自生物神经网络,生物神经网络中的每个神经元与其他神经元相连,当它“兴奋”时,想下一级相连的神经元发送化学物质,改变这些神经元的电位:如果某神经元的电位超过一个阈值,则被激活,否则不被激活.误差逆传播算法(error back propagation)是神经网络中最有代表性的算法,也是使用最多的算法之一. 误差逆传播算法理论推导 误差逆传播算法(error back propagation)简称BP网络算法.而一般在说BP网…
这是一个非常漂亮的三层反向传播神经网络的python实现,下一步我准备试着将其修改为多层BP神经网络. 下面是运行演示函数的截图,你会发现预测的结果很惊人! 提示:运行演示函数的时候,可以尝试改变隐藏层的节点数,看节点数增加了,预测的精度会否提升 import math import random import string random.seed(0) # 生成区间[a, b)内的随机数 def rand(a, b): return (b-a)*random.random() + a # 生成…
一.单层感知器 1958年[仅仅60年前]美国心理学家FrankRosenblant剔除一种具有单层计算单元的神经网络,称为Perceptron,即感知器.感知器研究中首次提出了自组织.自学习的思想,而且对对所解决的问题存在着收敛算法,并能从数学上严格证明,因而对神经网络的研究齐了重要作用. 1.单层感知器模型 单层感知器是指只有一层处理单元的感知器,如果包括输入层在内,应为两层.如图所示: a.输入层:$ X=(x_1, x_2, .., x_i, ..., x_n)^T$. b.输出层:$…