简介 DQN--Deep Q-learning.在上一篇博客DQN(Deep Q-learning)入门教程(四)之Q-learning Play Flappy Bird 中,我们使用Q-Table来储存state与action之间的q值,那么这样有什么不足呢?我们可以将问题的稍微复杂化一点了,如果在环境中,State很多,然后Agent的动作也很多,那么毋庸置疑Q-table将会变得很大很大(比如说下围棋),又或者说如果环境的状态是连续值而不是离散值,尽管我们可以将连续值进行离散化,但是又可能…