蒙特卡罗法 在介绍Q-learing算法之前,我们还是对蒙特卡罗法(MC)进行一些介绍.MC方法是一种无模型(model-free)的强化学习方法,目标是得到最优的行为价值函数\(q_*\).在前面一篇博客中,我们所介绍的动态规划算法则是一种有模型的算法.那么问题来了,什么是模型(model)?模型其实就是我们在第一篇博客:DQN(Deep Q-learning)入门教程(一)之强化学习介绍种所介绍的状态转化模型: \(P_{ss'}^a\). 在动态规划解决问题的时候,我们是已知\(P_{ss…
简介 DQN--Deep Q-learning.在上一篇博客DQN(Deep Q-learning)入门教程(四)之Q-learning Play Flappy Bird 中,我们使用Q-Table来储存state与action之间的q值,那么这样有什么不足呢?我们可以将问题的稍微复杂化一点了,如果在环境中,State很多,然后Agent的动作也很多,那么毋庸置疑Q-table将会变得很大很大(比如说下围棋),又或者说如果环境的状态是连续值而不是离散值,尽管我们可以将连续值进行离散化,但是又可能…
在DQN(Deep Q-learning)入门教程(四)之Q-learning Play Flappy Bird中,我们使用q-learning算法去对Flappy Bird进行强化学习,而在这篇博客中我们将使用神经网络模型来代替Q-table,关于DQN的介绍,可以参考我前一篇博客:DQN(Deep Q-learning)入门教程(五)之DQN介绍 在这篇博客中将使用DQN做如下操作: Flappy Bird MountainCar-v0 再回顾一下DQN的算法流程: 项目地址:Github…
在上一篇博客:DQN(Deep Q-learning)入门教程(一)之强化学习介绍中有三个很重要的函数: 策略:\(\pi(a|s) = P(A_t=a | S_t=s)\) 状态价值函数:\(v_\pi(s)=\mathbb{E}\left[R_{t+1}+\gamma \left(S_{t+1}\right) | S_{t}=s\right]\) 动作价值函数:\(q_{\pi}(s,a) = \mathbb{E}_{\pi}(R_{t+1} + \gamma q_{\pi}(S_{t+1}…
无废话ExtJs 入门教程四[表单:FormPanel] extjs技术交流,欢迎加群(201926085) 继上一节内容,我们在窗体里加了个表单.如下所示代码区的第28行位置,items:form. 1.代码如下: 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"&…
PySide——Python图形化界面入门教程(四) ——创建自己的信号槽 ——Creating Your Own Signals and Slots 翻译自:http://pythoncentral.io/pysidepyqt-tutorial-creating-your-own-signals-and-slots/ 你不必局限于Qt widget提供的信号,你可以使用Signal类来创建自己的信号.下面是一个定义的简单例子: from PySide.QtCore import Signal…
原文:Elasticsearch入门教程(四):Elasticsearch文档CURD 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/vbirdbest/article/details/79217590 一: 新增文档POST /{index}/{type} 或 PUT /{index}/{type}/{id} 注意:新增文档时可以显式指定id,id可以是数字也可以是字符串,如果不显示指…
原文:RabbitMQ入门教程(四):工作队列(Work Queues) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/vbirdbest/article/details/78596426 分享一个朋友的人工智能教程.比较通俗易懂,风趣幽默,感兴趣的朋友可以去看看. 工作队列 使用工作队列实现任务分发的功能,一个队列的优点就是很容易处理并行化的工作能力,但是如果我们积累了大量的工作,我们…
JasperReports入门教程(四):多数据源 背景 在报表使用中,一个页面需要打印多个表格,每个表格分别使用不同的数据源是很常见的一个需求.假如我们现在有一个需求如下:需要在一个报表同时打印所有老师的数据,再打印每个年级的学生的数据.那么本章我们就用这个例子来实现多数据源. 方案分析 通过上一篇基础组件的介绍,我们知道一个JasperReport报表中可以有多个Detail的Band,但是却共享一个主数据源,多个Detail是共享这个主数据源.查看Paramter和Field发现他们都支持…
在上一篇博客中,我们详细的对Q-learning的算法流程进行了介绍.同时我们使用了\(\epsilon-贪婪法\)防止陷入局部最优. 那么我们可以想一下,最后我们得到的结果是什么样的呢?因为我们考虑到了所有的(\(\epsilon-贪婪法\)导致的)情况,因此最终我们将会得到一张如下的Q-Table表. Q-Table \(a_1\) \(a_2\) \(s_1\) \(q(s_1,a_1)\) \(q(s_1,a_2)\) \(s_2\) \(q(s_2,a_1)\) \(q(s_2,a_2…