HOG特征提取分析(转)】的更多相关文章

背景引言 方向梯度直方图(Histogram of Oriented Gradient,HOG)是用于在计算机视觉和图像处理领域,目标检测的特征描述子.该项技术是用来计算图像局部出现的方向梯度次数或信息进行计数.此种方法跟边缘方向直方图.尺度不变特征变换以及形状上下文方法有很多相似.但与它们的不同点是:HOG的计算基于一致空间的密度矩阵来提高准确率.即:在一个网格密集的大小统一的细胞单元上计算,而且为了提高性能,还采用了重叠的局部对比度归一化技术.HoG特征与SVM分类器结合,已经被广泛应用于图…
Surf特征提取分析 Surf Hessian SIFT 读"H.Bay, T. Tuytelaars, L. V. Gool, SURF:Speed Up Robust Features[J],ECCV,2006"笔记 SURF:Speed Up Robust Features,加速鲁棒特征. 我觉得SURF是SIFT特征的一种近似计算,在相似性能甚至更好性能的同时提高了算法的速度.这些近似体现在 在尺度空间中,使用box filtes与原图像卷积,而不是使用DoG算子 确定关键点方…
SIFT特征提取分析 sift 关键点,关键点检测 读'D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J],IJCV,2004' 笔记 关键点是指图像中或者视觉领域中明显区别于其周围区域的地方,这些关键点对于光照,视角相对鲁棒,所以对图像关键点提取特征的好坏直接影响后续分类.识别的精度. 特征描述子就是对关键点提取特征的过程,应该具备可重复性.可区分性.准确性.有效性和鲁棒性. SIFT(Scale-I…
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果.整个算法分为以下几个部分: 1. 构建尺度空间 这是一个初始化操作,尺度空间…
Hog特征+SVM常用来做行人检测. opencv中也有Hog特征提取的原码,但是由于原码不是用python写的,而skimage用python实现了,所以就解读的skimage的代码. 先看用skimage库进行HOG特征提取的代码: from skimage.feature import hog from skimage import io im = io.imread('./timg.jpg',as_grey=True) normalised_blocks, hog_image = hog…
histogram of oriented gradient(方向梯度直方图)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功. 需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. 不变性:具有光照不变性,不具有尺寸…
转载自: http://blog.csdn.net/abcjennifer/article/details/7639681 SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思…