POJ 3181 Dollar Dayz(全然背包+简单高精度加法) id=3181">http://poj.org/problem?id=3181 题意: 给你K种硬币,每种硬币各自是1美元,2美元-K美元且能够无限使用,问你用上面K种硬币构成n美元的话有多少种方法? 分析: 本题是一道明显的全然背包问题, 只是本题还能够换一种方法来看: 整数n由前K个自然数构造, 一共同拥有多少种方法? (尽管本题要用到高精度加法, 可是非常easy, 不要被吓到哦) 首先是DP部分: 令dp[i][…
题意 : 给出目标金额 N ,问你用面额 1~K 拼成 N 的方案有多少种 分析 : 完全背包的裸题,完全背包在 DP 的过程中实际就是列举不同的装填方案数来获取最值的 故状态转移方程为 dp[i] += dp[j-w[i]] 但是这题怎么可能那么简单呢! N 和 K 的上限导致答案过大,需要使用高精度加法来完成 所以无耻的用 JAVA 来搞定了 import java.io.*; import java.lang.reflect.Array; import java.util.*; impor…
首先是 Uva 147:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=83 细心看完这题后发现还是完全背包,只不过需要对浮点数处理一下.即把所有硬币的面值都乘以100,化为整数,对输入的数据也作同样的处理,然后就是套完全背包的模板了,在输出时还要用格式和精度来卡一卡你……一开始我没想到用printf可以的,于是百度了cout的输出格式控制,…
Dollar Dayz Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5419   Accepted: 2054 Description Farmer John goes to Dollar Days at The Cow Store and discovers an unlimited number of tools on sale. During his first visit, the tools are sell…
题意:给出两个数,n,m,问1~m中的数组成n,有多少种方法? 这题其实就相当于 UVA 674 Coin Change,求解一样 只不过数据很大,需要用到高精度运算... 后来还看了网上别人的解法,是将大数转化成高位和低位两部分处理 代码一:用数组存储数据的每个位 #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> using namespace std…
可能nyist看见加的背包专题我老去凑热闹,觉得太便宜我了.他们新加的搜索专题居然有密码. 都是兄弟院校嘛!何必那么小气. 回到正题,跟我写的上一篇关于求组成方案的背包思路基本一样,无非就是一个二维费用的背包换成了完全背包.如果说题目有什么亮点的话,那就是大数了.第一遍写的时候瞎了我的狗眼竟然没注意到,我的1A就这么没了. 关于组成方案的叙述,还是看我之前那篇结题报告吧:关于背包组成方案的讨论 #include<stdio.h> #include<string.h> #define…
题意: 给出两个数,n,m,问m以内的整数有多少种组成n的方法完全背包+大数划分 思路: dp[i][j] := 用i种价格配出金额j的方案数. 那么dp[i][0] = 1,使用任何价格配出金额0的方案个数都是1(什么都不用). 递推关系式: 实际上是完全背包问题,只是状态转移方程形式有所不同,不过状态转移的方向是完全相同的. dp[i][j] = dp[i – 1][j] + dp[i – 1][j – i] + dp[i – 1][j – 2 * i] + … + dp[i – 1][0]…
题目链接:http://poj.org/problem?id=3181 题目大意:用1,2...K元的硬币,凑成N元的方案数. Sample Input 5 3 Sample Output 5 分析:这不是母函数是什么,不管你信不信,反正我是信了. 之前有过一篇,讲母函数的动态规划做法http://www.cnblogs.com/acm-bingzi/archive/2013/04/30/3051725.html 这道题目,坑就坑在高精度上了,刚开始怎么也没想到,而且做法也很奇特.就是将2个lo…
题目:http://poj.org/problem?id=3181 思路:将整数N划分为一系列正整数之和,最大不超过K.称为整数N的K划分. 递归:直接看代码: 动态规划:dp[i][j]:=将整数i做j划分的方法数. dp[i][j]=dp[i][i]: if(j>i) dp[i][j]=dp[i-j][j]+dp[i][j-1]://分j出现不出现两种情况 dp[i][j]=dp[i][j-1]+1:if(i==j)//单独的一个j和另外一种不包含j #include <iostream&…
01全然背包问题. 主要是求有多少种组合.二维dp做的人多了,这里使用一维dp就能够了. 一维的转换方程:dp[j] = dp[j-i] + dp[j];当中i代表重量,j代表当前背包容量. 意思就是dp[j-i] 代表j-i背包重量的时候最多的组合数,那么假设到了背包容量为j的时候,就是能够把第i个物品装进背包,那么就有dp[j-i]种装法, 假设没有i物品之前.那么容量为j的时候组合数是dp[j]. 那么当有i物品,且容量为j的时候,那么组合数就是dp[j-i] + dp[j]; 二维能够转…