CUDA Thread Indexing】的更多相关文章

1D grid of 1D blocks __device__ int getGlobalIdx_1D_1D() { return blockIdx.x *blockDim.x + threadIdx.x; } 1D grid of 2D blocks __device__ int getGlobalIdx_1D_2D() { return blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;…
Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. ----------------------------------------------------------------------------------------- 转载自http://blog.csdn.net/abcjennifer/article/details/42436727 本…
前言 并行就是让计算中相同或不同阶段的各个处理同时进行.目前有很多种实现并行的手段,如多核处理器,分布式系统等.本专题的文章将主要介绍使用 GPU 实现并行的方法.参考本专题文章前请务必搭建好 CUDA 开发平台,搭建方法可以参考上一篇文章. GPU 并行的优缺点 优点: 1. 显存具有更大的内存带宽 2. GPU 具有更大量的执行单元 3. 价格低廉 缺点: 1. 对于不能高度并行化的工作,能带来帮助不大. 2. 对于绝大多数显卡型号,CUDA 仅支持 float 类型而不支持 double…
CUDA Learning. #@author: gr #@date: 2014-04-06 #@email: forgerui@gmail.com 1. Introduction CPU和GPU的区别.GPU拥有更多的核心数,可以对简单逻辑.大量数据进行并行计算,大大提高了计算能力. 有更多的SM会有更好的性能. 2. General 1.1. kernel 核函数通过__global__声明.通过<<<...>>>指定执行的线程数. __global__ void…
CUDA thread index: int blockId = blockIdx.z * (gridDim.x*gridDim.y)                    + blockIdx.y * gridDim.x                    + blockIdx.x; int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)                      + threadIdx.z * (blo…
前言 并行就是让计算中相同或不同阶段的各个处理同时进行. 目前有很多种实现并行的手段,如多核处理器,分布式系统等,而本专题的文章将主要介绍使用 GPU 实现并行的方法. 参考本专题文章前请务必搭建好 CUDA 开发平台,搭建方法可以参考上一篇文章. GPU 并行的优缺点 优点: 1. 显存具有更大的内存带宽 2. GPU 具有更大量的执行单元 3. 价格低廉 缺点: 1. 对于不能高度并行化的工作,能带来帮助不大. 2. 对于绝大多数显卡型号,CUDA 仅支持 float 类型而不支持 doub…
CUDA 内存统一分析 关于CUDA 编程的基本知识,如何编写一个简单的程序,在内存中分配两个可供 GPU 访问的数字数组,然后将它们加在 GPU 上. 本文介绍内存统一,这使得分配和访问系统中任何处理器上运行的代码都可以使用的数据变得非常容易, CPU 或 GPU . 图 1 .内存统一是可从系统中的任何处理器访问的单个内存地址空间. 以几个简单的"练习"介绍,其中一个练习,运行最近基于 Pascal 的 GPU ,看看会发生什么. 建议这样做有两个原因.首先,因为 PascalMI…
Compilation Now that you have the prerequisites, edit your Makefile.config to change the paths for your setup The defaults should work, but uncomment the relevant lines if using Anaconda Python. cp Makefile.config.example Makefile.config # Adjust Mak…
目录 文章目录 目录 显卡 GPU GPU 与深度学习 GPU 与 CPU 体系结构的区别 GPU 显存与 CPU 主存的区别 GPU 与 CPU 之间的数据交互方式 GPU 的体系结构 GPU 的工作原理 GPU 的关键参数 CUDA 编程模型 CUDA 的架构 CUDA 的核心概念 CUDA 的工作原理 云主机显卡的实现方式 虚拟显卡 物理显卡直通 物理显卡虚拟化 KVM 虚拟机通过 PCI Pass-through 使用 NVIDIA 显卡 显卡 显卡(Video card.Display…
[源码解析] Pytorch 如何实现后向传播 (3)---- 引擎动态逻辑 目录 [源码解析] Pytorch 如何实现后向传播 (3)---- 引擎动态逻辑 0x00 摘要 0x01 前文回顾 0x02 引擎总体架构 0x03 启动引擎 3.1 初始化local ready queue 3.2 构建GraphTask 3.3 构建根节点 3.4 计算最小拓扑 3.5 计算依赖 3.6 初始化GraphTask ExecInfo 3.7 配置工作线程输入 3.8 开始运行 3.9 配置设备和R…