首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
转:谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版
】的更多相关文章
谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版
谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版 一.讲座正文: 大家好!我是贾扬清237,目前在Google Brain83,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe60.没有太多准备,所以讲的不好的地方还请大家谅解. 我用的ppt808基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:) 网页上应该还有一些python的样例帮助大家上…
转:谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版
[转:http://blog.csdn.net/buaalei/article/details/46344675] 大家好!我是贾扬清,目前在Google Brain,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe.没有太多准备,所以讲的不好的地方还请大家谅解.我用的ppt基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:)网页上应该还有一些Pytho…
(ZT)谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版
一.讲座正文:大家好!我是贾扬清,目前在Google Brain,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe.没有太多准备,所以讲的不好的地方还请大家谅解.我用的ppt基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:)网页上应该还有一些python的样例帮助大家上手,所以欢迎参观.ppt比较长,所以我想我主要就介绍一下背景以及high level…
关于深度学习(deep learning)的常见疑问 --- 谷歌大脑科学家 Caffe缔造者 贾扬清
问答环节 问:在finetuning的时候,新问题的图像大小不同于pretraining的图像大小,只能缩放到同样的大小吗?" 答:对的:) 问:目前dl在时序序列分析中的进展如何?研究思路如何,能简单描述一下么答:这个有点长,可以看看google最近的一系列machine translation和image description的工作. 问:2个问题:1.目前Caffe主要面对CV或图像的任务,是否会考虑其它任务,比如NLP?2.如果想学习Caffe代码的话,能给一些建议吗?答:Caffe的…
【转】贾扬清:希望Caffe成为深度学习领域的Hadoop
[转:http://www.csdn.net/article/2015-07-07/2825150] 在深度学习(Deep Learning)的热潮下,Caffe作为一个高效.实用的深度学习框架受到了广泛的关注.了解Caffe研发的背景.愿景.技术特色.路线图及其开发者的理念,对于我们选择合适的工具更好地进行深度学习应用的迭代开发大有裨益.<程序员>记者近日深度对话Caffe作者贾扬清,剖析Caffe的起源.目标.差异性.现存的一些问题和改进工作,以及未来的规划. 起源故事 <程序员&g…
加盟阿里!贾扬清被曝从Facebook离职,任阿里硅谷研究院VP
3 月 2 日傍晚,知乎上爆出一则 AI 人事变动大消息——Caffe 作者贾扬清将从 Facebook 离职. 短短数小时,就有近 10 万人浏览这个问题.不仅如此,据 AI 前线爆料,贾扬清离开 Facebook 之后将加盟阿里硅谷研究院担任 VP,于今年 3 月 11 日正式入职. 新智元向贾扬清本人及阿里方面求证,对方均未回复.3 月 27 号的 ScaledML 会议议程中,贾扬清也是作为 Facebook AI 架构总监出席. 另一方面,贾扬清离职的消息在业内已经传播,杜克大学教授陈…
zz独家专访AI大神贾扬清:我为什么选择加入阿里巴巴?
独家专访AI大神贾扬清:我为什么选择加入阿里巴巴? Natalie.Cai 拥有的都是侥幸,失去的都是人生 关注她 5 人赞同了该文章 本文由 「AI前线」原创,原文链接:独家专访AI大神贾扬清:我为什么选择加入阿里巴巴? 作者 | 蔡芳芳受访嘉宾 | 贾扬清 AI 前线导读:刚满 35 周岁的贾扬清是出生于浙江绍兴上虞的青年科学家,是业内主流 AI 框架 Caffe 的创始人.TensorFlow 的作者之一.PyTorch 1.0 的共同创始人,是全球最受关注的 AI 科学家之一.他曾任谷…
Google大脑科学家贾杨清(Caffe缔造者)-微信讲座
Google大脑科学家贾杨清(Caffe缔造者)-微信讲座 机器学习Caffe 贾扬清 caffe 一.讲座正文: 大家好!我是贾扬清178,目前在Google Brain69,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe48.没有太多准备,所以讲的不好的地方还请大家谅解. 我用的ppt671基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:)…
贾扬清分享_深度学习框架caffe
Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 1.caffe分享 1.1.caffe起源 1·2.caffe介绍 1.3.caffe其他方向 2.讨论 2.1.caffe算法与结构 2.2.caffe工程与应用 2.3.模型训练与调参 2.4.caffe与DL的学习与方向 2.5.其他 3.附录 1.caffe分享 我用的ppt基本上和我们在…
贾扬清牛人(zz)
贾扬清加入阿里巴巴后,能否诞生出他的第三个世界级杰作? 文 / 华商韬略 张凌云 本文转载,著作权归原作者所有 贾扬清加入阿里巴巴后,能否诞生出他的第三个世界级杰作? 2017年1月11日,美国硅谷的人工智能先锋大会上,贾扬清结束演讲下台,便被簇拥而来的媒体记者包围了. 时任Facebook AI架构总监的他,已是业界公认的AI大神,面庞还青涩得像个20岁的大男孩. 当被问到是否考虑回国工作时,他笑称,“这是一个很trick(狡猾)的问题.” 直到两年后,贾扬清才给出了确切答案. 3月…
AI大牛阿里VP贾扬清
贾扬清生长于浙江绍兴,2002年考入清华,并在清华拿到硕士学位,其后远赴UC伯克利获得博士学位. 2013年,贾扬清博士毕业加入之前就已实习了2年的Google,在Jeff Dean麾下任职,参与TensorFlow打造,致力于前沿的深度学习研究和工程,参与了ImgeNet2014比赛.移动端深度学习.Google下一代AI平台TensorFlow开发.基于深度学习的产品开发和产品咨询等. 2016年2月,贾扬清离职Google加盟Facebook,在LeCun麾下任研究科学家,主打前沿AI研究…
贾扬清谈大数据&AI发展的新挑战和新机遇
摘要:2019云栖大会大数据&AI专场,阿里巴巴高级研究员贾扬清为我们带来<大数据AI发展的新机遇和新挑战>的分享.本文主要从人工智能的概念开始讲起,谈及了深度学习的发展和模型训练,以及数据的爆发增长,着重阐述了算法.数据和算力的闭环. 直播回放 >>> 以下是精彩视频内容整理: 作为一个研究者的身份,在这么多年AI的科研工作之中,有哪些有意思的事情? 说到人工智能,从十几年前我开始做人工智能的时候,我当时认为毕业可能就失业了,我们永远不会像做数据库.系统.架构的人那…
谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN
谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN 朱晓霞发表于目标检测和深度学习订阅 235 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 立即抢购 在这篇文章中: 怎么搜出来? 模型怎么样? One More Thing 本文转载自量子位(QbitAI) 这是一只AI生出的小AI. 谷歌大脑的Quoc Le团队,用神经网络架构搜索 (NAS) ,发现了一个目标检测模型.长这样: △ 看不清请把手机横过来 它的准确率和速度都超过了大前辈…
超越Mask-RCNN:谷歌大脑的AI,自己写了个目标检测AI
这是一只AI生出的小AI. 谷歌大脑的Quoc Le团队,用神经网络架构搜索 (NAS) ,发现了一个目标检测模型.长这样: △ 看不清请把手机横过来 它的准确率和速度都超过了大前辈Mask-RCNN:也超过了另外两只行业精英:FPN和SSD. 模型叫做NAS-FPN.大佬Quoc Le说,它的长相完全在想象之外,十分前卫: △ 喜讯发布一日,已收获600颗心 AI的脑洞果然和人类不一样.对比一下,目标检测界的传统方法FPN (特征金字塔网络) 长这样: 谷歌大脑说,虽然网络架构搜索 (NAS)…
《我在谷歌大脑见习机器学习的一年:Node.js创始人的尝试笔记》阅读笔记
文章来源:https://www.toutiao.com/i6539751003690893828/?tt_from=weixin_moments&utm_campaign=client_share&from=timeline×tamp=1522668580&app=news_article_lite&utm_source=weixin_moments&isappinstalled=0&iid=29516333526&utm_med…
【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
Caffe上手教程
Caffe上手教程 入门系列FAQ72 在Unbuntu上安装Caffe828 Windows下安装Caffe1.4K Caffe框架上手教程1.2K Caffe编译运行调试462 Caffe 电脑配置要求383 Caffe作者贾扬清讲座510…
caffe学习(1):多平台下安装配置caffe
如何在 centos 7.3 上安装 caffe 深度学习工具 有好多朋友在安装 caffe 时遇到不少问题.(看文章的朋友希望关心一下我的创业项目趣智思成) 今天测试并整理一下安装过程.我是在阿里云上测试,选择centos 7.3 镜像. 先安装 epel 源 1 yum install epel-release 安装基本编译环境 1 2 yum install protobuf-devel leveldb-devel snappy-devel opencv-devel boost-dev…
从TensorFlow 到 Caffe2:盘点深度学习框架
机器之心报道 本文首先介绍GitHub中最受欢迎的开源深度学习框架排名,然后再对其进行系统地对比 下图总结了在GitHub中最受欢迎的开源深度学习框架排名,该排名是基于各大框架在GitHub里的收藏数,这个数据由MitchDeFelice在2017年5月初完成. TensorFlow 地址:https://www.tensorflow.org/ TensorFlow最开始是由谷歌一个称之为DistBeliefV2的库发展而来,它是一个公司内部的深度神经网络库,隶属于谷歌大脑项目.有一些人认为Te…
从TensorFlow到PyTorch:九大深度学习框架哪款最适合你?
开源的深度学习神经网络正步入成熟,而现在有许多框架具备为个性化方案提供先进的机器学习和人工智能的能力.那么如何决定哪个开源框架最适合你呢?本文试图通过对比深度学习各大框架的优缺点,从而为各位读者提供一个参考.你最看好哪个深度学习框架呢? 现在的许多机器学习框架都可以在图像识别.手写识别.视频识别.语音识别.目标识别和自然语言处理等许多领域大展身手,但却并没有一个完美的深度神经网络能解决你的所有业务问题.所以,本文希望下面的图表和讲解能够提供直观方法,帮助读者解决业务问题. 下图总结了在 GitH…
(zhuan) 深度学习全网最全学习资料汇总之模型介绍篇
This blog from : http://weibo.com/ttarticle/p/show?id=2309351000224077630868614681&u=5070353058&m=4077873754872790&cu=5070353058 深度学习全网最全学习资料汇总之模型介绍篇 雷锋网 作者: 三川 2017-02-21 16:38:00 查看源网址 阅读数:4 本文旨在加速深度学习新手入门,介绍 CNN.DBN.RNN.RNTN.自动编码器.GAN 等开发者最…
03基于python玩转人工智能最火框架之TensorFlow介绍
一句话介绍: Google开源的基于数据流图的科学计算库,适用于机器学习 不局限于机器学习,但目前被大多用于机器学习等. TensorFlow计算流图的概念图 Tensor在图中流动. TensorFlow的含义 拆字释义: Tensor 张量(tf中数据的表征) flow 流动 张量在图中流动 TensorFlow的详细架构 TensorFlow基本架构 TensorFlow 大事记 deepmind团队之前用的torch. 底层api调用起来繁琐. 1.3版本加入了很多高层次的抽象api.调…
Caffe入门随笔
Caffe入门随笔 分享一下自己入门机器学习的一些资料:(1)课程,最推荐Coursera上的Andrew NG的Machine Learning,最好注册课程,然后跟下来.其次是华盛顿大学的Machine Learning系列课程,一共有6门,包括毕业设计(2)书籍: 机器学习(周志华西瓜书).机器学习实战.统计学习方法(李航).集体智慧编程.数学之美(吴军)(3)微博@余凯_西二旗民工:@老师木:@梁斌penny:@张栋_机器学习:@邓侃:@大数据皮东:@djvu9:@陈天奇怪(4)知乎…
认识Caffe与Caffe2
认识Caffe与Caffe2 目录: 一.Caffe的作者-贾扬清 二.Caffe简介--Caffe.Caffe2.Caffe2Go 三.认识Caffe 四.认识Caffe2 五.认识Caffe2Go 正文: 一.Caffe的作者-贾扬清 Caffe 作者:贾扬清,任Facebook研究科学家,曾在Google Brain工作.在AI领域有数年的研究经历.在UC Berkeley获得计算机科学博士学位,在清华大学获得硕士和本科学位.对两款流行的深度学习框架做过贡献:Caffe的作者,Te…
[转]Caffe 深度学习框架上手教程
Caffe 深度学习框架上手教程 机器学习Caffe caffe 原文地址:http://suanfazu.com/t/caffe/281 blink 15年1月 6 Caffe448是一个清晰而高效的深度学习175框架,其作者是博士毕业于UC Berkeley的贾扬清1.3K,目前在Google62工作. Caffe28是纯粹的C++/CUDA架构,支持命令行.Python和MATLAB接口:可以在CPU和GPU123直接无缝切换: Caffe::set_mode(Caffe::GPU…
Caffe(卷积神经网络框架)介绍
Caffe(卷积神经网络框架)Caffe,全称Convolution Architecture For Feature Extraction caffe是一个清晰,可读性高,快速的深度学习框架.作者是贾扬清,加州大学伯克利的ph.D,现就职于FaceBook.caffe的官网是http://caffe.berkeleyvision.org/. Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作. Caffe是纯粹的C++/CUDA…
人工智能深度学习Caffe框架介绍,优秀的深度学习架构
人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要的是,它将深度学习的每一个细节都原原本本地展现出来,大大降低了人们学习研究和开发的难度. 一.从Caffe的开发中了解到的用户需求:深度学习的框架总会不断改变,Caffe也会有被新框架代替的一天.但是在开发Caffe的过程中,贾扬清发现大家喜欢的框架其实有着很多相似的地方,这些闪光点拥有很长的生命周…
Caffe 深度学习框架介绍
转自:http://suanfazu.com/t/caffe/281 Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清,目前在Google工作. Caffe是纯粹的C++/CUDA架构,支持命令行.Python和MATLAB接口:可以在CPU和GPU直接无缝切换: Caffe::set_mode(Caffe::GPU); Caffe的优势 上手快:模型与相应优化都是以文本形式而非代码形式给出.Caffe给出了模型的定义.最优化设置以及预训练的权重,方便立…
全球AI界最值得关注的十位科学家
全球AI界最值得关注的十位科学家 我们可以看到AI已经从象牙塔里的高冷研究,逐步转换为科技公司.互联网公司的最核心竞争力.AI代表了这时代人类的前沿智慧,也正达到一种科学的极致. 这两天在美国加利福尼亚州的山景城,google 正举办着I/O 2016年度开发者大会,AI(artificial intelligence人工智能)再度成为大会焦点. 智能助手.智能家居中枢.智能聊天应用等新产品陆续在大会上发布.有意思的是,谷歌本次发布了智能家居的硬件产品Google Home来对抗Amazon…
caffe卷积输入通道如何到输出通道
今天一个同学问 卷积过程好像是对 一个通道的图像进行卷积, 比如10个卷积核,得到10个feature map, 那么输入图像为RGB三个通道呢,输出就为 30个feature map 吗, 答案肯定不是的, 输出的个数依然是 卷积核的个数. 可以查看常用模型,比如lenet 手写体,Alex imagenet 模型, 每一层输出feature map 个数 就是该层卷积核的个数. 1. 一通道单个卷积核卷积过程 2. 一通道 多个卷积核卷积过程 一个卷积核得到的特征提取是不充分的,我们可以添加…