SURF 特征匹配】的更多相关文章

import cv2 import numpy as np def drawMatchesKnn_cv2(img1_gray,kp1,img2_gray,kp2,goodMatch): h1, w1 = img1_gray.shape[:2] h2, w2 = img2_gray.shape[:2] vis = np.zeros((max(h1, h2), w1 + w2, 3), np.uint8) vis[:h1, :w1] = img1_gray vis[:h2, w1:w1 + w2]…
参考:http://www.cnblogs.com/ronny/p/4045979.html,博主对源码进行了分析,不过很多没看明白. 分为几个部分.积分图:借助积分图像,图像与高斯二阶微分模板的滤波转化为对积分图像的加减运算.在哈尔特征中也用到这个. DoH近似:将模板与图产像的卷积转换为盒子滤波运算,我们需要对高斯二阶微分模板进行简化,进而对Hessian矩阵行列式的值进行简化.使用近似的Hessian矩阵行列式的极大值检测斑点, 使用近似的Hessian矩阵行列式来表示图像中某一点x处的斑…
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中.我们一起探讨了Ope…
http://blog.csdn.net/huixingshao/article/details/42672073 /** * @file SURF_Homography * @brief SURF detector + descriptor + FLANN Matcher + FindHomography * @author A. Huaman */ #include <stdio.h> #include <iostream> #include <cv.h> #inc…
特征的匹配大致可以分为3个步骤: 特征的提取 计算特征向量 特征匹配 对于3个步骤,在OpenCV2中都进行了封装.所有的特征提取方法都实现FeatureDetector接口,DescriptorExtractor接口则封装了对特征向量(特征描述符)的提取,而所有特征向量的匹配都继承了DescriptorMatcher接口. 简单的特征匹配 int main() { const string imgName1 = "x://image//01.jpg"; const string im…
转战matlab了.步骤说一下: 目标图obj 含目标的场景图scene 载入图像 分别检测SURF特征点 分别提取SURF描述子,即特征向量 用两个特征相互匹配 利用匹配结果计算两者之间的transform关系tform 根据obj位置与变换关系tform,在scene图上框出obj 代码,来自matlab,http://localhost:9090/vision/gs/object-detection-and-tracking.html#btt5qyu %step1:读取图片 %读取obje…
基于SURF特征的图像与视频拼接技术的研究和实现(一)      一直有计划研究实时图像拼接,但是直到最近拜读西电2013年张亚娟的<基于SURF特征的图像与视频拼接技术的研究和实现>,条理清晰.内容完整.实现的技术具有市场价值.因此定下决心以这篇论文为基础脉络,结合实际情况,进行“基于SURF特征的图像与视频拼接技术的研究和实现”.       一.基于opencv的surf实现       3.0以后,surf被分到了"opencv_contrib-master"中去,…
了解了SIFT特征后,来学习SURF特征. 虽说是SIFT的一个变种,可是跟SIFT还是有差别的 差别有例如以下: 1.尺度空间的构建(近似)不同. 2.同意尺度空间多层图像同一时候被处理 3.特征点主方向确定採用haar小波特征统计方法. 4.特征点描写叙述子採用haar小波特征. 接下来贴个SURF匹配代码: // Load image from file IplImage *pLeftImage = cvLoadImage("1.jpg", CV_LOAD_IMAGE_GRAYS…
特征匹配(Feature Match)是计算机视觉中很多应用的基础,比如说图像配准,摄像机跟踪,三维重建,物体识别,人脸识别,所以花一些时间去深入理解这个概念是不为过的.本文希望通过一种通俗易懂的方式来阐述特征匹配这个过程,以及在过程中遇到的一些问题. 首先我通过几张图片来指出什么是特征匹配,以及特征匹配的过程. 图像一:彩色圆圈为图像的特征点 图像二: 图像一与图像二的匹配: 概念理解:什么是特征,什么是特征描述,什么是特征匹配 假设这样的一个场景,小白和小黑都在看一个图片,但是他们想知道他们…
一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要.这篇文章我总结了视觉领域最常用的几种特征点以及特征匹配的方法. 在计算机视觉领域,兴趣点(也称关键点或特征点)的概念已经得 到了广泛的应用, 包括目标识别. 图像配准. 视觉跟踪. 三维重建 等. 这个概念的原理是, 从图像中选取某些特征点并对图像进行局部 分析,而非观察整幅图像. 只要图像中有足够…