CS229 笔记07】的更多相关文章

CS229 笔记07 Optimal Margin Classifier 回顾SVM \[ \begin{eqnarray*} h_{w,b}&=&g(w^{\rm T}x+b)\\[1em] g(z)&=&\begin{cases}1&z\geq0\\[1em]-1&z<0\end{cases}\\[1em] y&\in&\{-1,1\}\\[1em] \hat\gamma^{(i)}&=&y^{(i)}\left(w…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是,有时会发现生成的算法\(f(x)\)的错误率比较高,只使用这个算法达不到要求. 这时\(f(x)\)就是一个弱算法. 在以前学习算法的过程中,我们认识到算法的参数很重要,所以把公式改写成这样: \[ f(x,arguments) \\ where \\ \qquad x \text{ : calculated…
JAVA自学笔记07 1.构造方法 1) 例如:Student s = new Student();//构造方法 System.out.println(s);// Student@e5bbd6 2)功能:给对象中的数据进行初始化 3)格式:方法名与类名相同,没有具体的返回值类型(包括void),没有具体的返回值 public 类名(){-;}; 4)注意事项:如果不提供构造方法,系统将给出默认的无参构造方法,若已给出,系统不再给出构造方法,可以被重载. 5)重载格式:可以有参数列表即可以在构造方…
学习笔记 07 --- JUC集合 在讲JUC集合之前我们先总结一下Java的集合框架,主要包含Collection集合和Map类.Collection集合又能够划分为LIst和Set. 1. List的实现类主要有: LinkedList, ArrayList, Vector, Stack. (01) LinkedList是双向链表实现的双端队列:它不是线程安全的.仅仅适用于单线程. (02) ArrayList是数组实现的队列,它是一个动态数组.它也不是线程安全的,仅仅适用于单线程. (03…
机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018-11-2机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharri…
CS229 笔记08 Kernel 回顾之前的优化问题 原始问题为: \[ \min_{w,b} \frac{1}{2}||w||^2\\[1.5em] {\text{s.t.}}y^{(i)}\left(w^{\rm T}x^{(i)}+b\right)\geq1 \] 原始问题的对偶问题为: \[ \max_{\alpha}\left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j}^m y{(i)} y^{(j)}\alpha_i \alph…
CS229 笔记06 朴素贝叶斯 事件模型 事件模型与普通的朴素贝叶斯算法不同的是,在事件模型中,假设文本词典一共有 \(k\) 个词,训练集一共有 \(m\) 封邮件,第 \(i\) 封邮件的词的个数为 \(n_i\) ,则 \(x^{(i)} \in \{1,2,\cdots,k\}^{n_i}\) . 此时模型的参数为: \[ \begin{eqnarray*} \phi_{k|y=0}&=&P(x_j=k|y=0)\\[1em] \phi_{k|y=1}&=&P(x…
CS229 笔记05 生成学习方法 判别学习方法的主要思想是假设属于不同target的样本,服从不同的分布. 例如 \(P(x|y=0) \sim {\scr N}(\mu_1,\sigma_1^2)\) , \(P(x|y=1) \sim {\scr N}(\mu_2,\sigma_2^2)\) . Gaussian Discriminant Analysis(高斯判别分析) 在这里还是讨论 \(y\in\{0,1\}\) 的二元分类问题, \(P(y)=\phi^y(1-\phi)^{1-y…
CS229 笔记04 Logistic Regression Newton's Method 根据之前的讨论,在Logistic Regression中的一些符号有: \[ \begin{eqnarray*} P(y=1|x;\Theta)&=&h_\Theta(x)=\frac{1}{1+e^{-\Theta^{{\rm T}}x}} \\[1em] P(y|x;\Theta)&=&[h_\Theta(x)]^y[1-h_\Theta(x)]^{1-y} \\[1em]…
CS229 笔记03 局部加权线性回归 Non-Parametric Learning Algorithm (非参数学习方法) Number of parameters grows with the size of sample. (参数的数目随着样本的数目增加而增加.) Locally Weighted Regression (局部加权线性回归) 损失函数的定义为: $ J_\Theta=\sum_i{w^{(i)}(y^{(i)}-\Theta^{{\rm T}}x^{(i)})^2} $…