spark streaming检查点使用】的更多相关文章

import org.apache.spark._ import org.apache.spark.streaming._ /** * Created by code-pc on 16/3/14. */ object Pi { def functionToCreateContext():StreamingContext={ def updateStateFunction(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] =…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…
本文来自Spark Streaming项目带头人 Tathagata Das的博客文章,他现在就职于Databricks公司.过去曾在UC Berkeley的AMPLab实验室进行大数据和Spark Streaming的研究工作.本文主要谈及了Spark Streaming容错的改进和零数据丢失. 以下为原文: 实时流处理系统必须要能在24/7时间内工作,因此它需要具备从各种系统故障中恢复过来的能力.最开始,Spark Streaming就支持从driver和worker故障恢复的能力.然而有些…
本期内容: 1. Spark Streaming Job架构与运行机制 2. Spark Streaming 容错架构与运行机制 事实上时间是不存在的,是由人的感官系统感觉时间的存在而已,是一种虚幻的存在,任何时候宇宙中的事情一直在发生着的. Spark Streaming好比时间,一直遵循其运行机制和架构在不停的在运行,无论你写多或者少的应用程序都跳不出这个范围. import org.apache.spark.SparkConf import org.apache.spark.streami…
Accumulators and Broadcast Variables 这些不能从checkpoint重新恢复 如果想启动检查点的时候使用这两个变量,就需要创建这写变量的懒惰的singleton实例. 下面是一个例子: def getWordBlacklist(sparkContext): if ('wordBlacklist' not in globals()): globals()['wordBlacklist'] = sparkContext.broadcast(["a", &…
package iie.udps.example.operator.spark; import scala.Tuple2; import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function…
Spark Streaming揭秘 Day35 Spark core思考 Spark上的子框架,都是后来加上去的.都是在Spark core上完成的,所有框架一切的实现最终还是由Spark core来做的.抛开任何具体的东西,现在考虑下Spark core是个什么东西. 解析rdd 程序就是数据+代码.所以首先,我们需要考虑spark core由什么数据结构构成,一共就三种:rdd,broadcast,accumulator,最重要.最核心的是rdd. rdd可以简单的认为是一个数组,只不过是一…
目录 目录 概况 原理 API DStream WordCount示例 Input DStream Transformation Operation Output Operation 缓存与持久化 Checkpoint 性能调优 降低批次处理时间 设置合理批次时间间隔 内存调优 概况 Spark Streaming支持实时数据流的可扩展(scalable).高吞吐(high-throughput).容错(fault-tolerant)的流处理(stream processing). 架构图 特性…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
Overview A Quick Example Basic Concepts Linking Initializing StreamingContext Discretized Streams (DStreams) Input DStreams and Receivers Transformations on DStreams Output Operations on DStreams DataFrame and SQL Operations MLlib Operations Caching…