题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is a certain amount of night guards that are available to protect the local junkyard from possible junk robberies. These guards need to be…
1099. Work Scheduling Time limit: 0.5 second Memory limit: 64 MB There is certain amount of night guards that are available to protect the local junkyard from possible junk robberies. These guards need to scheduled in pairs, so that each pair guards…
1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night guards that are available to protect the local junkyard from possible junk robberies. These guards need to scheduled in pairs, so that each pair guards a…
二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图. 1.一个二分图中的最大匹配数等于这个图中的最小点覆盖数 König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数.如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选…
Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total Submission(s): 336    Accepted Submission(s): 116 Problem Description A new season of Touhou M-1 Grand Prix is approaching. Girls in Gensokyo…
http://acm.hdu.edu.cn/showproblem.php?pid=4687 此题求哪些边在任何一般图极大匹配中都无用,对于任意一条边i,设i的两个端点分别为si,ti, 则任意一个极大匹配中都必然有si或ti至少一个点被匹配,当在图中去掉si,ti两个点时,匹配数会损失一个或两个. 如果损失两个,就说明在极大匹配中这两个点分别连接不同的边,于是边i是无用的 所以总体思路:一般图匹配求出最大匹配数cnt0,分别试着去掉每条边的端点,再次匹配,匹配数如果小于cnt0-1,则这条边无…
从前一个和谐的班级,所有人都是搞OI的.有 n 个是男生,有 0 个是女生.男生编号分别为 1,…,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于一个小组. 有若干个这样的条件:第 v 个男生和第 u 个男生愿意组成小组. 请问这个班级里最多产生多少个小组? 输入格式 第一行两个正整数,n,m.保证 n≥2. 接下来 m 行,每行两个整数 v,u 表示第 v 个男生和第 u 个男生愿意组成小组.保证 1≤v,u≤n,保证 v≠u,保证同一个条…
一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total Submission(s): 649    Accepted Submission(s): 202…
一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后手没有路可走,由于假设还有路可走,这一条交错路,就是一个增广路,必定有更大的匹配. Game Time Limit: 1 Second      Memory Limit: 32768 KB Fire and Lam are addicted to the game of Go recently.…
问题描述 ​ 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\)为\(G\)的一个匹配,当且仅当\(|S|\)最大时,称\(S\)为\(G\)的最大匹配 ​ 那么要如何求解一个图的最大匹配呢? 特殊图上? ​首先考虑特殊图的最大匹配问题,也就是很经典的二分图最大匹配,这个问题可以用匈牙利算法解决,这里就不再赘述具体的实现等细节问题,我们只回顾一下这个算法的核心思…