Hive为什么要分桶】的更多相关文章

hive -- 分区,分桶(创建,修改,删除) 分区: 静态创建分区: 1. 数据: john doe 10000.0 mary smith 8000.0 todd jones 7000.0 boss man 20000.0 freed finance 15000.0 stacy saber 4000.0 建表+添加一个数据 create table if not exists employees( name string, money float) row format delimited f…
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分.Hive也是针对某一列进行桶的组织.Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中. 把表(或者分区)组织成桶(Bucket)有两个理由: (1)获得更高的查询处理效率.桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构.具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现.比…
1.创建分区表 hive> create table weather_list(year int,data int) partitioned by (createtime string,area string) row format delimited fields terminated by ","; 修改表: hive> alter table weather_list change data new_data int; hive> alter table wea…
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分.Hive也是针对某一列进行桶的组织.Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中. 把表(或者分区)组织成桶(Bucket)有两个理由: (1)获得更高的查询处理效率.桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构.具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现.比…
分区表 在Hive Select查询中.通常会扫描整个表内容,会消耗非常多时间做不是必需的工作. 分区表指的是在创建表时,指定partition的分区空间. 分区语法 create table tablename name string ) partitioned by(key type,-) create table if not exists employees( name string, salary string, subordinates array<string>, deducti…
一.分区表 1.1 概念 Hive中的表对应为HDFS上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为HDFS上表目录的子目录,数据按照分区存储在子目录中.如果查询的where字句的中包含分区条件,则直接从该分区去查找,而不是扫描整个表目录,合理的分区设计可以极大提高查询速度和性能. 这里说明一下分区表并Hive独有的概念,实际上这个概念非常常见.比如在我们常用的Oracle数据库中,当表中的数据量不断增大,查询数据的速度就会下降,这时也可以对表进行分区…
一.分区表 1.1 概念 Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为 HDFS 上表目录的子目录,数据按照分区存储在子目录中.如果查询的 where 字句的中包含分区条件,则直接从该分区去查找,而不是扫描整个表目录,合理的分区设计可以极大提高查询速度和性能. 这里说明一下分区表并 Hive 独有的概念,实际上这个概念非常常见.比如在我们常用的 Oracle 数据库中,当表中的数据量不断增大,查询数据的速度就会下降,…
一.分区表 1.1 概念 Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为 HDFS 上表目录的子目录,数据按照分区存储在子目录中.如果查询的 where 字句的中包含分区条件,则直接从该分区去查找,而不是扫描整个表目录,合理的分区设计可以极大提高查询速度和性能. 这里说明一下分区表并 Hive 独有的概念,实际上这个概念非常常见.比如在我们常用的 Oracle 数据库中,当表中的数据量不断增大,查询数据的速度就会下降,…
桶表也是一种用于优化查询而设计的表类型.创建通表时,指定桶的个数.分桶的依据字段,hive就可以自动将数据分桶存储.查询时只需要遍历一个桶里的数据,或者遍历部分桶,这样就提高了查询效率 ------创建订单表create table user_leads(leads_id string,user_id string,user_id string,user_phone string,user_name string,create_time string)clustered by (user_id)…
分桶表 将数据按照指定的字段进行分成多个桶中去,说白了就是将数据按照字段进行划分,可以将数据按照字段划分到多个文件当中去 开启hive的桶表功能 set hive.enforce.bucketing=true; 设置reduce的个数 set mapreduce.job.reduces=3; 创建桶表 create table course (c_id string,c_name string,t_id string) clustered by(c_id) into 3 buckets row…