GoogLeNetv3 论文研读笔记】的更多相关文章

Rethinking the Inception Architecture for Computer Vision 原文链接 摘要 卷积网络是目前最新的计算机视觉解决方案的核心,对于大多数任务而言,虽然增加的模型大小和计算成本都趋向于转化为直接的质量收益(只要提供足够的标注数据去训练),但计算效率和低参数计数仍是各种应用场景的限制因素.目前,我们正在探索增大网络的方法,目标是通过适当的分解卷积和积极的正则化来尽可能地有效利用增加的计算 引言 深度卷积架构上的架构改进可以用来改善大多数越来越多地依…
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 原文链接 摘要 向传统体系结构中引入残差连接使网络的性能变得更好,这提出了一个问题,即将Inception架构与残差连接结合起来是否能带来一些好处.在此,研究者通过实验表明使用残差连接显著地加速了Inception网络的训练.也有一些证据表明,相比没有残差连接的消耗相似的Inception网络,残差Inception网络在性能上具有微…
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 原文链接 摘要 当前神经网络层之前的神经网络层的参数变化,引起神经网络每一层输入数据的分布产生了变化,这使得训练一个深度神经网络变得复杂.这样就要求使用更小的学习率,参数初始化也需要更为谨慎的设置.并且由于非线性饱和(注:如sigmoid激活函数的非线性饱和问题),训练一个深度神经网络会非常困难.我们称这个现象为…
Going deeper with convolutions 原文链接 摘要 研究提出了一个名为"Inception"的深度卷积神经网结构,其目标是将分类.识别ILSVRC14数据集的技术水平提高一个层次.这一结构的主要特征是对网络内部计算资源的利用进行了优化.这一目标的实现是通过细致的设计,使得在保持计算消耗稳定不变的同时增加网络的宽度与深度 引言 在物体识别方面,最大的收获其实并不来自于深度网络或是大型模型的单独使用,而是来自深度结构和传统机器视觉的协同作用,比如R-CNN算法 此…
Deep Residual Learning for Image Recognition 原文链接 摘要 深度神经网络很难去训练,本文提出了一个残差学习框架来简化那些非常深的网络的训练,该框架使得层能根据其输入来学习残差函数而非原始函数.本文提出证据表明,这些残差网络的优化更简单,而且通过增加深度来获得更高的准确率 引言 深度网络很好的将一个端到端的多层模型中的低/中/高级特征以及分类器整合起来,特征的等级可以通过所堆叠层的数量来丰富.有结果显示,模型的深度发挥着至关重要的作用 在深度的重要性的…
Alexnet - 论文研读个人笔记 一.论文架构 摘要: 简要说明了获得成绩.网络架构.技巧特点 1.introduction 领域方向概述 前人模型成绩 本文具体贡献 2.The Dataset 数据集来源,训练数据进行的一些预处理 3.The Architecture 网络模型大体组成 ReLU Training on Multiple GPUs LRN (Local Response Normalization) Overlapping Pooling 网络模型整个具体架构 4.Redu…
<DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks>研读笔记 论文标题:DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks 来源:ICCV 2017 摘要: 尽管手机中的嵌入式照相机的性能在快速地发展,但是它们所受到的物理限制——较小的感光器件,精简的镜头和缺少特定的硬件——制约着手机的相机拍出与DSLR(单反)同…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 为了提高资源的利用率以及满足不同应用的需求,在同一集群内会部署各种不同的分布式运算框架(cluster computing framework),他们有着各自的调度逻辑. Mesos…
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, built using word co-occurrence statistics as per the distributional hypothesis. 分布式假说(distributional hypothesis) word with similar contexts have the…