KNN与SVM对比&SVM与逻辑回归的对比】的更多相关文章

首先说一下两种学习方式: lazy learning  和  eager learning. 先说 eager learning, 这种学习方式是指在进行某种判断(例如,确定一个点的分类或者回归中确定某个点对应的函数值)之前,先利用训练数据进行训练得到一个目标函数,待需要时就只利用训练好的函数进行决策,这是一种一劳永逸的方法, SVM 就属于这种学习方式: 而 lazy learning 是指只有到了需要决策时才会利用已有数据进行决策,而在这之前不会经历eager learning 所拥有的训练…
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3).https://www.cnblogs.com/pinard/p/6029432.html (4).https://zhuanlan.zhihu.com/p/76563562 (5).https://www.cnblogs.com/ModifyRong/p/7739955.html 一.逻辑回归介…
前情提要: 通俗地说逻辑回归[Logistic regression]算法(一) 逻辑回归模型原理介绍 上一篇主要介绍了逻辑回归中,相对理论化的知识,这次主要是对上篇做一点点补充,以及介绍sklearn 逻辑回归模型的参数,以及具体的实战代码. 1.逻辑回归的二分类和多分类 上次介绍的逻辑回归的内容,基本都是基于二分类的.那么有没有办法让逻辑回归实现多分类呢?那肯定是有的,还不止一种. 实际上二元逻辑回归的模型和损失函数很容易推广到多元逻辑回归.比如总是认为某种类型为正值,其余为0值. 举个例子…
在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在来看一下多分类的情况. 现实中相对于二分类问题,我们更常遇到的是多分类问题.多分类问题如何求解呢?有两种方式.一种是方式是修改原有模型,另一种方式是将多分类问题拆分成一个个二分类问题解决. 先来看一下第一种方式:修改原有模型.即:把二分类逻辑回归模型变为多分类逻辑回归模型. (二分类逻辑回归称为binary…
线性回归是回归模型 感知器.逻辑回归以及SVM是分类模型 线性回归:f(x)=wx+b 感知器:f(x)=sign(wx+b)其中sign是个符号函数,若wx+b>=0取+1,若wx+b<0取-1 它的学习策略是最小化误分类点到超平面的距离, 逻辑回归:f(x)=sigmoid(wx+b)取值范围在0-1之间. 感知器和SVM的对比: 它俩都是用于分类的模型,且都以sign符号函数作为分类决策函数.但是感知器只适用于线性可分的数据,而SVM可以通过核函数处理非线性可分的数据.拿感知器和线性可分…
1. 前言 在机器学习的分类问题领域中,有两个平分秋色的算法,就是逻辑回归和支持向量机,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结. 2. LR和SVM的联系 都是监督的分类算法. 都是线性分类方法 (不考虑核函数时). 都是判别模型. 3. LR和SVM的不同 损失函数的不同,LR是对数损失函数,SVM是hinge损失函数. SVM不能产生概率,LR可以产生概率. SVM自带结构风险最小化,LR则是经验风险最小化. SVM会用核函数而LR一…
这篇文章将介绍感知器.逻辑回归的求解和SVM的部分求解,包含部分的证明.本文章涉及的一些基础知识,已经在<梯度下降.牛顿法和拉格朗日对偶性>中指出,而这里要解决的问题,来自<从感知器到SVM> .<从线性回归到逻辑回归>两篇文章. 感知器: 前面的文章已经讲到,感知器的目标函数如下: $min \ L(w,b)$ 其中,$L(w,b)=-\sum_{i=1}^{n}[y_i*(w*x_i+b)]$ 对于上面这种无约束的最优化问题,一般采用的是梯度下降的办法,但是,考虑到…
目录 线性回归,逻辑回归,神经网络,SVM的总结 线性回归,逻辑回归,神经网络,SVM的总结 详细的学习笔记. markdown的公式编辑手册. 回归的含义: 回归就是指根据之前的数据预测一个准确的输出值. 分类的含义: 分类就是预测离散的输出值, 比如男生为1, 女生为0(0/1离散输出问题). 机器学习中往往会有一个假设(hypothesis), 本质上来讲\(h\)代表学习算法的解决方案或函数. \(h\)可以理解为是我们预先选定的规则或者函数的形式,我们需要不停地得到对应的参数. \(h…
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异常值定义为与其余数据群1不一致的样本或事件.异常值通常包含有关影响数据生成过程2的系统和实体的异常特征的有用信息. 异常检测算法的常见应用包括: 入侵检测系统信用卡诈骗有趣的传感器事件医学诊断在本文中,我们将重点介绍异常检测 - 信用卡欺诈的最常见应用之一.通过一些简单的离群值检测方法,可以在真实世…
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好. 数学上,ElasticNet被定义为L1和L2正则化项的凸组合: 通过适当设置α,ElasticNet包含L1和L2正则化作为特殊情况.例如,如果用参数α设置为1来训练线性回归模型,则其等价于Lasso模型.另一方面,如果α被设置为0,则训练的模型简化为ridge回归模型.…