spark 模型选择与超参调优 机器学习可以简单的归纳为 通过数据训练y = f(x) 的过程,因此定义完训练模型之后,就需要考虑如何选择最终我们认为最优的模型. 如何选择最优的模型,就是本篇的主要内容: 模型验证的方法 超参数的选择 评估函数的选择 模型验证的方法 在<统计学习方法>这本书中,曾经讲过模型验证的方法有三种,分别是简单的交叉验证,S折交叉验证,留一交叉验证 简单的交叉验证 即把全部数据按照比例分割成两部分,分别是训练集和测试集.在训练集训练模型,在测试集测试效果,最终选择一个代…