ARM Linux 大小核切换——cortex-A7 big.LITTLE 大小切换代码分析 8核CPU或者是更多核的处理器,这些CPU有可能不完全对称.有的是4个A15和4个A7,或者是4个A57和4个A53,甚至像海思麒麟935处理器(4核A53 2.2 GHz + 4核A53 1.5 GHz),这8个核的频率可能不一样,则使用过程中需要大小核切换(频率高的是大核,频率低的是小核).本文以ARM cortex-A7为例,分析大小核切换的代码,着重于分析实现切换的代码,对于为什么要这样切换.以…
[导读]因为大学生找课程资料很麻烦,直到有人把搜集到的资料放在了Github上!现在,你不光都可以自由免费的获取北大.清华.浙大.中科大的相关课程资源进行自学,也可以对资源进行补充. 读过大学的人,对搜集教程.试题资料过程中的艰辛应该深有感触.就拿新智元刚刚报道的浙大新开人工智能专业课来说,可能很多同学脑海中首先会想这是个啥?我应该干点啥?哪儿找资料和考题? 我们有好用的课表应用,却没有一个好用的课程资源!于是有人分别将北大.清华.浙大和中科大的课程资源.试题等放在了Github上.目前4所大学…
PPT 可以说是讲得相当之清楚了... deepsystems.io 中文翻译: https://zhuanlan.zhihu.com/p/24916786 图解YOLO YOLO核心思想:从R-CNN到Fast R-CNN一直采用的思路是proposal+分类 (proposal 提供位置信息, 分类提供类别信息)精度已经很高,但是速度还不行. YOLO提供了另一种更为直接的思路: 直接在输出层回归bounding box的位置和bounding box所属的类别(整张图作为网络的输入,把 O…
前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhihu.com/question/38102762——知乎网友 Deep Learning与Bayesian Learning在很多情况下是相通的,随着Deep Learning理论的发展, 我们看到,Deep Learning越来越像Bayesian Learning的一个子集,Deep Learni…
前言: 文章:CNN的结构分析-------:  文章:历年ImageNet冠军模型网络结构解析-------: 文章:GoogleLeNet系列解读-------: 文章:DNN结构演进History-CNN-GoogLeNet :Going Deeper with Convolutions :文章:Google最新开源Inception-ResNet-v2,借助残差网络进一步提升图像分类水准-----附有代码解析: 文章:深入浅出--网络模型中Inception的作用与结构全解析  科普一下…
  论文链接:Going deeper with convolutions 代码下载: Abstract We propose a deep convolutional neural network architecture codenamed Inception that achieves the (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing res…
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/231 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 ShowMeAI为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learn…
卷积网络的压缩方法 一,低秩近似 二,剪枝与稀疏约束 三,参数量化 四,二值化网络 五,知识蒸馏 六,浅层网络 我们知道,在一定程度上,网络越深,参数越多,模型越复杂,其最终效果越好.神经网络的压缩算法是,旨在将一个庞大而复杂的预训练模型(pre-trained model)转化为一个精简的小模型. 按照压缩过程对网络结构的破坏程度,我们将模型压缩技术分为"前端压缩"和"后端压缩"两部分. 前端压缩,是指在不改变原网络结构的压缩技术,主要包括知识蒸馏.轻量级网络(紧…
LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS 论文地址:https://arxiv.org/pdf/2106.09685.pdf 代码地址:https://github.com/microsoft/LoRA 摘要 自然语言处理的一个重要范式包括在一般领域数据上进行大规模的预训练 ,并适应特定的任务或领域.随着我们对更大的模型进行预训练,重新训练所有模型参数的完全微调变得不太可行.以GPT-3 175B为例--部署独立的微调模型实例,每个都有…
[说明] 本文翻译自新加坡国立大学何向南博士 et al.发布在<World Wide Web>(2017)上的一篇论文<Neural Collaborative Filtering>.本人英语水平一般+学术知识匮乏+语文水平拙劣,翻译权当进一步理解论文和提高专业英语水平,translate不到key point还请见谅. 何博士的主页:http://www.comp.nus.edu.sg/~xiangnan/ 本文原文:http://www.comp.nus.edu.sg/~xi…