1.随机高斯测量矩阵 function [ Phi ] = GaussMtx( M,N ) %GaussMtx Summary of this function goes here % Generate Bernoulli matrix % M -- RowNumber % N -- ColumnNumber % Phi -- The Gauss matrix %% Generate Gauss matrix Phi = randn(M,N); %Phi = Phi/sqrt(M); end 2…
主要内容: SP的算法流程 SP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 SP与CoSaMP的性能比较 一.SP的算法流程 压缩采样匹配追踪(CoSaMP)与子空间追踪(SP)几乎完全一样,因此算法流程也基本一致. SP与CoSaMP主要区别在于"Ineach iteration, in the SP algorithm, only K new candidates are added, while theCoSAMP algorithm adds 2K…
主要内容: OMP在稀疏分解与压缩感知中的异同 压缩感知通过OMP重构信号的唯一性 一.OMP在稀疏分解与压缩感知中的异同 .稀疏分解要解决的问题是在冗余字典(超完备字典)A中选出k列,用这k列的线性组合近似表达待稀疏分解信号y,可以用表示为y=Aθ,求θ. .压缩感知重构要解决的问题是事先存在一个θ和矩阵A,然后得到y=Aθ(压缩观测),现在是在已知y和A的情况下要重构θ. A为M×N矩阵(M<<N,稀疏分解中为冗余字典,压缩感知中为传感矩阵A=ΦΨ,即测量矩阵Φ乘以稀疏矩阵Ψ), y为M×…
主要内容: OMP的算法流程 OMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.OMP的算法流程 二.OMP的MATLAB实现(CS_OMP.m) function [ theta ] = CS_OMP( y,A,iter ) % CS_OMP % y = Phi * x % x = Psi * theta % y = Phi * Psi * theta % 令 A = Phi*Psi, 则y=A*theta %…
主要内容: 傅里叶矩阵及其MATLAB实现 小波变换矩阵及其MATLAB实现  傅里叶矩阵及其MATLAB实现 傅里叶矩阵的定义:(来源: http://mathworld.wolfram.com/FourierMatrix.html) 傅里叶矩阵的MATLAB实现: dftmtx(N) is the N-by-N complex matrix of values around the unit-circle whose inner product with a column vector of…
在压缩感知中,总是看到"矩阵满足RIP"之类的字眼,没错,这是一个压缩感知绕不开的术语,有限等距性质(Restricted Isometry Property, RIP). 注意:RIP性质针对的同样是感知矩阵而非测量矩阵. 0.相关概念与符号 1.RIP定义 中文版: 英文版: 概括: (RIP)矩阵满足2K阶RIP保证了能够把任意一个K稀疏信号θK映射为唯一的y,也就是说要想通过压缩观测y恢复K稀疏信号θK,必须保证传感矩阵满足2K阶RIP,满足2K阶RIP的矩阵任意2K列线性无关…
在压缩感知中,有一些用来评价感知矩阵(非测量矩阵)的指标,如常见的RIP等,除了RIP之外,spark常数也能够用来衡量能否成为合适的感知矩阵. 0.相关概念与符号 1.零空间条件NULL Space Condition 在介绍spark之前,先考虑一下感知矩阵的零空间. 这里从矩阵的零空间来考虑测量矩阵需满足的条件:对于K稀疏的信号x,当且仅当测量矩阵的零空间与2K个基向量张成的线性空间没有交集,或者说零空间中的向量不在2K个基向量张成的线性空间中. 上述描述的性质似乎有点难懂,那么与之等价的…
主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, gOMP)算法可以看作为OMP算法的一种推广.OMP每次只选择与残差相关最大的一个,而gOMP则是简单地选择最大的S个.之所以这里表述为"简单地选择"是相比于ROMP之类算法的,不进行任何其它处理,只是选择最大的S个而已. gOMP的算法流程: 二.gOMP的MATLAB实现(CS_gOMP…
主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段弱正交匹配追踪(Stagewise Weak OMP)可以说是StOMP的一种修改算法,它们的唯一不同是选择原子时的门限设置,这可以降低对测量矩阵的要求.我们称这里的原子选择方式为"弱选择"(Weak Selection),StOMP的门限设置由残差决定,这对测量矩阵(原子选择)提出了要求…
主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewise OMP)也是由OMP改进而来的一种贪心算法,与CoSaMP.SP算法类似,不同之处在于CoSaMP.SP算法在迭代过程中选择的是与信号内积最大的2K或K个原子,而StOMP是通过门限阈值来确定原子.此算法的输入参数中没有信号稀疏度K,因此相比于ROMP及CoSaMP有独到的优势(这句话存在疑问)…