浅谈\(DP\):https://www.cnblogs.com/AKMer/p/10437525.html 题目传送门:https://www.luogu.org/problemnew/show/P1004 设\(f[i][j][k][l]\)表示第一条路从\((1,1)\)走到\((i,j)\),第二条路从\((1,1)\)走到\((k,l)\)能取的最大权值. 然后直接暴力四种更新.洛谷题解对于优化也讲了不少.(省选前刷这种水题是不是搞错了什么) 时间复杂度:\(O(n^4)\) 空间复杂…
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3…
https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P1066: 首先普及一下知识:一个2^k进制n位数转换成2进制数时最多有n*k位:一个n进制数的每位数字属于集合{0,1,……,n-1}. 这样我们就知道给出w.k后r的位数最多为wei=w/k向上取整,但要注意,如果w%k有余,则r在最高位上不能把集合{0,1,……,n-1}的数都取一遍. 又知道r的位…
原题链接 大力猜结论竟然猜对了.. 对于一对\(k,w\),我们可以把\(w\)位划分成\(k\)位一段的形式,每一段就是转换成十进制后的一位,这个从题面的解释中应该可以理解. 先不考虑可能多出(即剩余不足以划成\(k\)位)的一段,这样使得每一位的枚举上界都是\(2 ^ k - 1\),然后我们枚举几位数. \(2\)位数 十位为\(1\),显然个位只能为\(2\sim 2 ^ k - 1\),共\(2 ^ k - 2\)种. 十位为\(2\),显然个位只能为\(3\sim 2 ^ k - 2…
P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. 花神的题目是这样的:设 sum(i)表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 ∏i=1N​sum(i) ,也就是sum(1)∼sum(N)的乘积. 输入输出格式 输入格式: 一个正整数 N. 输出格式: 一个数,答案模 10000007 的值. 输入输…
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php?id=4408 https://www.luogu.org/problemnew/show/P4587 https://loj.ac/problem/2174 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3…
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3…
P1976 鸡蛋饼 题目背景 Czyzoiers 都想知道小 x 为什么对鸡蛋饼情有独钟.经过一番逼问,小 x 道出 了实情:因为他喜欢圆. 题目描述 最近小 x 又发现了一个关于圆的有趣的问题:在圆上有2N 个不同的点,小 x 想用 N 条线段把这些点连接起来(每个点只能连一条线段), 使所有的线段都不想交,他想知道这样的连接方案有多少种? 输入输出格式 输入格式: 有且仅有一个正整数 N 输出格式: 要求的方案数(结果 mod 100000007). 输入输出样例 输入样例#1: 24 输出…
P1722 矩阵 II 题目背景 usqwedf 改编系列题. 题目描述 如果你在百忙之中抽空看题,请自动跳到第六行. 众所周知,在中国古代算筹中,红为正,黑为负…… 给定一个1*(2n)的矩阵(usqwedf:这不是一个2n的队列么),现让你自由地放入红色算筹和黑色算筹,使矩阵平衡[即对于所有的i(1<=i<=2n),使第1~i格中红色算筹个数大于等于黑色算筹] 问有多少种方案满足矩阵平衡. 见样例解释. 输入输出格式 输入格式: 正整数 n 输出格式: 方案数t对100取模 输入输出样例…
对于不会树套树.主席树的本蒟蒻,还是老老实实的用莫队做吧.... 其实这题跟普通莫队差不了多远,无非就是有了一个时间,当我们按正常流程排完序后,按照基本的莫队来,做莫队时每次循环对于这一次操作,我们在结构体中记录一下这次操作前有多少个改值操作,然后将当前的ans和每个点的颜色信息更新至当前队列(此队列不是莫队,是原队列)的状态再移动l,r两指针. 简单点说: 设当前询问为a,下一个询问为b,我们已知a,要求b. 首先我们像普通莫队一样转移左右端点. 这时候我们可能会发现a和b的经历的修改次数不同…