异常检测(anomaly detection)】的更多相关文章

十五.异常检测(Anomaly Detection) 15.1 问题的动机 参考文档: 15 - 1 - Problem Motivation (8 min).mkv 在接下来的一系列视频中,我将向大家介绍异常检测(Anomaly detection)问题.这是机 器学习算法的一个常见应用.这种算法的一个有趣之处在于:它虽然主要用于非监督学习问 题,但从某些角度看,它又类似于一些监督学习问题. 什么是异常检测呢?为了解释这个概念,让我举一个例子吧: 假想你是一个飞机引擎制造商,当你生产的飞机引擎…
异常检测(Anomaly Detection) 问题的动机 (Problem Motivation) 异常检测(Anomaly detection)问题是机器学习算法中的一个常见应用.这种算法的有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又和监督学习问题非常类似. 举例说明什么是异常检测: 假想你是一个飞机引擎制造商,当你生产的飞机引擎从生产线上流出时,你需要进行QA(质量控制测试),而作为这个测试的一部分,你测量了飞机引擎的一些特征变量,比如引擎运转时产生的热量,或者引擎的振…
异常检测(Anomaly Detection) 给定数据集…
主要内容: 一.模型介绍 二.算法过程 三.算法性能评估及ε(threshold)的选择 四.Anomaly detection vs Supervised learning 五.Multivariate Gaussian 一.模型介绍 如何检测一个成品是否异常? 假设红交叉表示正常的样本点,如果抽取到的成品其位于正常样本点的范围之内,则可认为其正常:如果成品的位置远离正常样本点,则可认为其出现异常. 为了更加明确“正常样本点”的范围,我们添加圈圈以划定区域,如: 此时,选择一个threshol…
记得在做电商运营初期,每每为我们频道的促销活动锁取得的“超高”销售额感动,但后来随着工作的深入,我越来越觉得这里面水很深.商家运营.品类运营不断的通过刷单来获取其所需,或是商品搜索排名,或是某种kpi指标,但这些所谓的“脏数据”,却妨碍了平台运营者对于真实数据的分析和促销效果的评估.今天我们讨论一种非监督学习算法(Unsupervised Learning Algorithm),试图在真实数据中,找出并标注异常数据. 该算法是基于高斯分布的异常检测算法(Anomaly Detection Alg…
异常检测的例子: 如飞机引擎的两个特征:产生热量与振动频率,我们有m个样本画在图中如上图的叉叉所示,这时来了一个新的样本(xtest),如果它落在上面,则表示它没有问题,如果它落在下面(如上图所示),表示这个样本有些问题,在把它交付给客户之前,我们需要对它做进一步的检测. 对异常检测一般化的描述: 我们有m个正常的样本,来了一个新的样本xtest,我们需要检测它是否异常??? →我们的方法是根据这m个正常的样本,来建立一个模型p(x),即对x的分布概率建模 →建好模型后,根据这个模型p(x)来看…
15.1  问题的动机 15.2  高斯分布 15.3  算法 15.4  开发和评价一个异常检测系统 15.5  异常检测与监督学习对比 15.6  选择特征 15.7  多元高斯分布(可选) 15.8  使用多元高斯分布进行异常检测(可选) 15.1  问题的动机 15.2  高斯分布 15.3  算法 15.4  开发和评价一个异常检测系统 15.5  异常检测与监督学习对比 15.6  选择特征 15.7  多元高斯分布(可选) 15.8 使用多元高斯分布进行异常检测(可选)…
估计P(x)的分布--密度估计 我们有m个样本,每个样本有n个特征值,每个特征都分别服从不同的高斯分布,上图中的公式是在假设每个特征都独立的情况下,实际无论每个特征是否独立,这个公式的效果都不错.连乘的公式表达如上图所示. 估计p(x)的分布问题被称为密度估计问题(density estimation) 异常检测算法 1>找出一些能观察出异常行为的特征,尽可能尝试选择能够描述数据相关属性的特征. 2> 根据样本估计出参数的值,有n个特征每个特征都服从不同的正态分布,有不同的u和σ2,分别对这些…
高斯分布 高斯分布也称为正态分布,μ为平均值,它描述了正态分布概率曲线的中心点.σ为标准差,σ2为方差,σ描述了曲线的宽度.在中心点附近概率密度大,远离中心点概率密度小. 高斯分布图 概率曲线下方的面积为1(积分为1),概率和为1.μ为中心点,σ为宽度.σ小时图形更尖更高,σ大时图形更矮更宽,因为面积不变为1,μ变化时表示中心点的转移. 参数估计 假设我们猜测每个样本xi服从某种分布(如正态分布),我不知道这些参数(μ,σ2)的值是多少. 参数估计=>给定数据集,希望能估算出(μ,σ2)的值 如…
一.如何构建Anomaly Detection模型? 二.如何评估Anomaly Detection系统? 1)将样本分为6:2:2比例 2)利用交叉验证集计算出F1值,可以用F1值选取概率阈值ξ,选取使得F1值最大的那个ξ. 3)同时也可以根据训练集.交叉验证集.测试集来同样选取使用哪些特征变量更好.方法就是不断更换特征组合构建模型,利用交叉验证集计算F1值,并看测试集的效果等等. 三.什么时候用异常数据检测法,什么时候用有监督的分类方法? 1)一般来讲,当样本中有大量正常样本数据,而仅仅有少…