传送门 题意简述: mmm次询问,每次规定两个点必须选或者不选,求树上的带权最小覆盖. 思路: 考虑链分治+ddpddpddp 仍然是熟悉的套路,先考虑没有修改的状态和转移: 令fi,0/1f_{i,0/1}fi,0/1​表示强制iii不选/选时iii为根子树的带权最小覆盖. 显然有: fi,0=∑v∈sonfv,1f_{i,0}=\sum_{v\in son}f_{v,1}fi,0​=∑v∈son​fv,1​ fi,1=valp+∑v∈sonmin{fv,0,fv,1}f_{i,1}=val_…
暴力dp非常显然,设f[i][0/1]表示i号点不选/选时i子树内的答案,则f[i][0]=Σf[son][1],f[i][1]=a[i]+Σmin(f[son][0],f[son][1]). 注意到B的部分分,可以想到每次修改只会对修改点到根的路径上的点的dp值产生影响. 考虑如何优化修改路径这一过程,先看只修改一个点的情况. 由于每次修改并非累积,事实上应该考虑一种预处理来快速得到答案,并且发现其实最终我们只需要f[root][].容易想到倍增.设f[x][k][0/1][0/1]表示x号点…
题面 首先可以写一个暴力dp的式子,非常经典的树形dp \(dp[i][0]\)表示\(i\)这个点没有驻军,\(dp[i][1]\)就是有驻军,\(j\)是\(i\)的孩子.那么显然: \[ \begin{align*} dp[i][0]&=dp[j][1]\\ dp[i][1]&=\min\{dp[j][0],dp[j][1]\} \end{align*} \] 然后我们发现,对于一个孩子\(j\),它的转移与其他孩子无关.也就是其他孩子的值对他没有影响. 这样的性质决定了这道题目的可…
\(\mathcal{NOIP2018}\) 保卫王国 - 竞赛题解 按某一个炒鸡dalao名曰 taotao 的话说: \(\ \ \ \ \ \ \ \ \ "一道sb倍增题"\) 顺便提一下他的[题解](因为按照这个思路写的,所以代码看起来也差不多) 因为比较复(胡)杂(炸),可能需要理解久一点 『题目』 参见 [洛谷 P5024] 『解析』 一.初步思考 如果不考虑多次询问的话,显然可以进行一次简单的树形DP,特殊判断一下当前的点(也就是城市)能不能选(放军队)就行了~ 但是显…
传送门 题意简述: 捉迷藏强化版(带有边权,可以为负数) 思路:好吧这次我们不用点分树,我们用听起来更屌的链分治. 直接把树剖成若干条重链,这样保证从任意一个点跳到根节点是不会跳超过logloglog条重链的. 然后用上链分治的常规套路:分是否在链上面的信息讨论,并将整条链的值全部统计在链顶,这样修改的时候沿着链往上跳修改logloglog次即可. 那么针对这道题可以怎么瞎搞维护呢? 考虑对每个点构建一个大根堆hih_ihi​来维护它的子树去掉重儿子所在子树一位的点到它的距离的最值. 显然这个是…
传送门 题意:支持单点修改,维护子树里的最大连通子块和. 思路: 扯皮: bzojbzojbzoj卡常差评. 网上的题解大多用了跟什么最大子段和一样的转移方法. 但是我们实际上是可以用矩阵转移的传统ddpddpddp写法来做这道题的. 由于我推出来矩阵是3∗33*33∗3的因此常数巨大gggggg了,因此蒟蒻博主只能提供思路和一份TLETLETLE的代码. 正题: 一道考虑链分治+dpdpdp套路题. 同样先考虑静态的版本. 显然可以fi,0/1f_{i,0/1}fi,0/1​表示以iii为根的…
传送门 ddpddpddp模板题. 题意简述:给你一棵树,支持修改一个点,维护整棵树的最大带权独立集. 思路: 我们考虑如果没有修改怎么做. 貌似就是一个sbsbsb树形dpdpdp,fi,0f_{i,0}fi,0​表示不选iii的最大值,fi,1f_{i,1}fi,1​表示选iii的最大值. 那么可以这样从iii的儿子vvv转移过来: fp,0+=max{fv,0,fv,1},fp,1+=fv,0f_{p,0}+=max\{f_{v,0},f_{v,1}\},f_{p,1}+=f_{v,0}f…
NOIP2018提高组D2T3 ddp虽然好想,但是码量有点大(其实是我不会),因此本文用倍增优化树形DP来解决本题. 题意分析 给一棵树染色,每个节点染色需要一定的花费,要求相邻两个节点至少要有一个被染色,给出一些限制条件,求满足每个限制条件的最小花费为多少. 思路分析 首先判断无解的情况.显然,只有当$a,b$互为父子关系(这里的父子关系指的是严格相邻),且$x,y$都为0时才无解,其它情况都可以通过多染色来解. 很容易想到树形DP,那么具体状态如何设置呢?对于每个限制条件给出的两个点$a,…
题目大意:给一颗有点权的树,每次规定两个点选还是不选,求这棵树的最小权点覆盖. 题解 ZZ码农题. 要用动态dp做,这题就是板子,然鹅并不会,留坑代填. 因为没有修改,所以可以静态倍增. 我们先做一遍正常的树形dp,求出g[i][0/1],0/1表示当前节点选或不选. 然后我们再倒腾出一个数组l[i][0/1]表示从当前点作为根,再扣掉当前子树的答案. 然后倍增处理dp[i][j][0/1][0/1]表示从i向上2i长度的链,起点和终点的选择情况,表示以下区域的答案. 比如这条黑色的链,它表示的…
DDP模板题 #include<bits/stdc++.h> #define ui unsigned int #define ll long long #define db double #define ld long double #define ull unsigned long long #define ft first #define sd second #define pb(a) push_back(a) #define mp(a,b) std::make_pair(a,b) #de…
可以直接套动态dp,但因为它询问之间相互独立,所以可以直接倍增记x转移到fa[x]的矩阵 #include<bits/stdc++.h> #define CLR(a,x) memset(a,x,sizeof(a)) using namespace std; typedef long long ll; typedef pair<int,int> pa; ; const ll inf=1e17; inline ll rd(){ ll x=;; ;c=getchar();} +c-',c…
嘟嘟嘟 由于一些知道的人所知道的,不知道的人所不知道的原因,我来发NOIP2018day2T3的题解了. (好像我只是个搬运工--) 这题真可以叫做NOIplus了,跟其他几道比较水的题果然不一样,无论代码量还是思维难度都有一个更高的层次. 我是看了zhoutb的题解的.而且抄了他代码(还没抄对),所以这里直接推荐各位看luogu的题解吧. 关于这个倍增数组的预处理,实际上只用考虑为父亲结点的时候该怎么办(就是裸dp).而对于\(2 ^ i (i > 0)\)的倍增部分,只用枚举u和祖先的状态转…
我的倍增解法吊打动态 \(dp\) 全局平衡二叉树没学过 先讲 \(NOIP\) 范围内的倍增解法. 我们先考虑只有一个点取/不取怎么做. \(f[x][0/1]\) 表示取/不取 \(x\) 后,\(x\) 子树内的最小权覆盖集,\(g[x][0/1]\) 表示取/不取 \(x\) 后,除 \(x\) 子树的最小权覆盖集.那么这两个数组可以 \(O(n)\) 预处理出来. \[f[x][0]+=f[y][1]\] \[f[x][1]+=min(f[y][0],f[y][1])\] \[g[y]…
题目 强制选点我们可以把那个点权搞成\(-inf\),强制不选我们搞成\(inf\),之后就真的成为动态\(dp\)的板子题了 由于不想像板子那样再写一个最大独立集的方程,之后利用最小点覆盖=总点权-最大独立集的做法,而直接写了一个最小点覆盖的方程,所以写出了很多锅 矩阵里存放相同意义变量的位置可能真实值不相等,于是要取一个\(min\) 突然发现自己好像也没有写出多少锅,那就这样吧 代码 #include<algorithm> #include<iostream> #includ…
Code: // luogu-judger-enable-o2 #include<bits/stdc++.h> #define ll long long #define lson (now<<1) #define rson ((now<<1)|1) #define setIO(s) freopen(s".in","r",stdin) #define maxn 300000 const long long inf = 1000000…
题意 求最小权值点覆盖. mmm次询问,每次给出两个点,分别要求每个点必须选或必须不选,输出每次的最小权值覆盖或者无解输出−1-1−1 题解 强制选或者不选可以看做修改权值为±∞\pm\infin±∞. 那么就是这道板题了. CODE #include <bits/stdc++.h> using namespace std; typedef long long LL; template<class T>inline void read(T &x) { char ch; in…
一.栈(stack) 1.定义: 栈是一种只能在某一端插入和删除数据的特殊线性表.他按照先进先出的原则存储数据,先进的数据被压入栈底,最后进入的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后被压入栈的,最先弹出).因此栈也称先进后出表. 允许进行插入删除操作的一端称为栈顶,另一端称为栈底.栈底固定,栈顶浮动.插入元素称为进栈,删除一个元素称为进栈,栈内元素为零称为空栈. 2.stack成员函数 bool empty ( ) ---->栈为空返回true,否则返回false: void po…
传送门 题意: 支持插入一个向量,删去某一个现有的向量,查询现有的所有向量与给出的一个向量的点积的最大值. 思路: 考虑线段树分治. 先对于每个向量处理出其有效时间放到线段树上面,然后考虑查询:对于两个已有的向量(u1,v1)(u_1,v_1)(u1​,v1​)和(u2,v2)(u_2,v_2)(u2​,v2​),假设给出的向量为(x0,y0)(x_0,y_0)(x0​,y0​)u1>u2&&(u1,v1)⋅(x0,y0)>(u2,v2)⋅(x0,y0)u_1>u_2\&…
「NOIP2018保卫王国」 题目描述 有一棵 \(n\) 个点, 点有点权 \(a_i\),\(m\) 组询问, 每次求钦点两个节点必须选或者必须不选后的树上最小点覆盖. \(1 \leq n, m \leq 10^5\) 解题思路 : 这个题唯一的意义恐怕是普及了一个还不能算太普及的科技,至少我没有时间去实现这个东西.当然 \(\text{nqiiii}\) 大爷考场上写了标算没写这个科技就过了是真的强.(不愧是机房里仅次于 \(\text{AK}\)王\(\text{zzd}\) 的男人)…
保卫王国 电脑卡懒得把题面挪过来了. 朴素 \[ dp_{i,0}=\sum dp_{s,1}\\ dp_{i,1}=\sum \min(dp_{s,0},dp_{s,1})+p_i \] 然后直接动态dp就行了 我发现lct是最好写的,反正比树剖好写,还比她快 没倍增快,但是看起来倍增挺难写的... Code: #include <cstdio> #include <algorithm> #define ll long long const ll inf=1ll<<4…
传送门 跟QTREE6QTREE6QTREE6神似,改成了求连通块里的最大值. 于是我们对每条链开一个heapheapheap维护一下即可. MDMDMD终于1A1A1A链分治了. 代码: #include<bits/stdc++.h> #define ri register int #define fi first #define se second using namespace std; inline int read(){ int ans=0; bool w=1; char ch=ge…
传送门 题意简述:给你一棵nnn个黑白点的树,支持改一个点的颜色,询问跟某个点颜色相同的连通块大小. 思路: 还是链分治 233 记fi,0/1f_{i,0/1}fi,0/1​表示iii的所有颜色为0/10/10/1的轻儿子在它们子树中颜色相同的连通块大小. 然后这个可以用来询问子树里的答案,但是要询问的东西是针对全局的. 因此我们沿着重链往上跳更新答案,直到某条链中有点跟要问的颜色不一样. 即fif_ifi​表示这个东西: 对于这棵树,我们的fB1,0f_{B1,0}fB1,0​就等于跟它颜色…
传送门 题意简述: 给你一棵nnn个黑白点的树,初始全是黑点. 现在支持给一个点换颜色或者求整颗树中离某个点最近的白点跟这个点的距离. 思路: 考虑链分治维护答案,每个链顶用一个堆来维护答案,然后对于每条重链开一棵线段树维护子树里所有白点到线段树最左/右端点的最短距离. 然后瞎更新查询即可. 代码: #include<bits/stdc++.h> #define ri register int using namespace std; inline int read(){ int ans=0;…
Uoj 441 保卫王国 动态 \(dp\) .今天才来写这个题. 设 \(f[u][0/1]\) 表示子树 \(u\) 中不选/选 \(u\) 时的最小权值和,显然有:\(f[u][0]=\sum f[v][1] ,f[u][1]=w[u]+\sum \min(f[v][0],f[v][1])​\) . 现在要资瓷修改 \(x\) 的点权 \(w[x]\) ,容易发现修改后只会影响 \(x\) 到根节点这一条链上的 \(f\) 值.若暴力更新这一条链,在树深度大时,时间复杂度仍是 \(O(nm…
题意 题目描述 Z 国有\(n\)座城市,\(n - 1\)条双向道路,每条双向道路连接两座城市,且任意两座城市 都能通过若干条道路相互到达. Z 国的国防部长小 Z 要在城市中驻扎军队.驻扎军队需要满足如下几个条件: 一座城市可以驻扎一支军队,也可以不驻扎军队. 由道路直接连接的两座城市中至少要有一座城市驻扎军队. 在城市里驻扎军队会产生花费,在编号为i的城市中驻扎军队的花费是\(p_i\). 小 Z 很快就规划出了一种驻扎军队的方案,使总花费最小.但是国王又给小 Z 提出 了\(m\)个要求…
[NOIP2018TG]保卫王国 BZOJ luogu 当动态dp模板题写的,(全集-最大点权独立集)不能放军队的+inf,必须放军队-inf即可 注意矩阵乘法的顺序问题 #define ll long long #define ls x<<1,l,mid #define rs x<<1|1,mid+1,r #include<bits/stdc++.h> using namespace std; const int _=1e5+5,inf=1e9; int re(){…
梦想MxWeb3D协同设计平台 2019.02.28更新 SDK开发包下载地址: http://www.mxdraw.com/ndetail_10130.html 在线演示网址: http://www.mxdraw.com:3000/ 1.  编写API CHM帮助文档 2.  增加保存和回退功能 3.  增加图纸搜索位置设置函数,addFileSearchPath 4.  完善绘图函数 5.  优化后台缓存文件大小 6.  优化前后台代码 7.  增加清除函数…
保卫王国 Description Z 国有n座城市,n - 1条双向道路,每条双向道路连接两座城市,且任意两座城市 都能通过若干条道路相互到达. Z 国的国防部长小 Z 要在城市中驻扎军队.驻扎军队需要满足如下几个条件: 一座城市可以驻扎一支军队,也可以不驻扎军队. 由道路直接连接的两座城市中至少要有一座城市驻扎军队. 在城市里驻扎军队会产生花费,在编号为i的城市中驻扎军队的花费是pipi. 小 Z 很快就规划出了一种驻扎军队的方案,使总花费最小.但是国王又给小 Z 提出 了m个要求,每个要求规…
2019/9/16 Linux软件安装 方式:yum/rpm/源码安装 yum安装: yum 是通过分析RPM的包头数据后,根据各软件的相关性制作出属性相对应的解决方案,然后可以自动处理软件的相依属性问题,以解决软件安装或移除与升级的问题. yum search MySQL 在源中收索软件包 yum install mysql-community-server.x86_64 安装软件 yum remove MySQL 卸载软件==yum erase mysql RPM安装: rpm -qa 查询…
这题真是十分难写啊 不管是点分治还是括号序列都有一堆细节.. 点分治:时空复杂度$O(n\log^2n)$,常数巨大 主要就是3个堆的初始状态 C堆:每个节点一个,为子树中的点到它父亲的距离的堆. B堆:每个节点一个,存所有儿子的堆的堆顶.特别地,如果该节点关灯,那么将加入一个0:如果没有元素,堆顶应返回负数. A堆:全局一个,存所有B堆的最大值和最小值之和.特别地,如果B堆不足两个,返回负数. 这样,我们一开始需要关闭所有的等,即对所有点调用一次turn_off.由于堆顶返回的是负数,删除时找…