D. Acyclic Organic Compounds   You are given a tree T with n vertices (numbered 1 through n) and a letter in each vertex. The tree is rooted at vertex 1. Let's look at the subtree Tv of some vertex v. It is possible to read a string along each simple…
传送门 第一次接触到Boruvka求最小生成树 它的原版本是:初始每一个点构成一个连通块,每一次找到每一个连通块到其他的连通块权值最短的边,然后合并这两个连通块.因为每一次连通块个数至少减半,所以复杂度是\(O((n+m)logn)\)的 虽然它的原版本用途不多,但是思想可以涵盖很多其他题目,比如这道题 可以想到一个做法:将所有权值插入一个\(Trie\)里,在每一个叶子节点维护到达这个节点的数的编号.像上面那样维护若干连通块,每一次计算权值最小的边时,将当前连通块中所有权值从Trie中删去,然…
Query on A Tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Problem Description Monkey A lives on a tree, he always plays on this tree. One day, monkey A learned about one of the bit-operations, xor. He was…
题目描述 给一个小写字母字符串 S ,q 次询问每次给出 l,r ,求 s[l..r] 的 Border . Border: 对于给定的串 s ,最大的 i 使得 s[1..i] = s[|s|-i+1..|s|], |s| 为 s 的长度. 题解 这题的描述很短,给人一种很可做的假象. 暴力1:每次对区间lr做一次KMP,求出border数组,复杂度nq. 暴力2:构建后缀自动机,用线段树合并维护出right集合考虑到两个串的最长后缀为他们在parent树上的LCA的len,所以我们可以在pa…
1295 XOR key  题目来源: HackerRank 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] 至 A[R] 这R - L + 1个数中,与X 进行异或运算(Xor),得到的最大值是多少? Input 第1行:2个数N, Q中间用空格分隔,分别表示数组的长度及查询的数量(1 <= N <= 50000, 1 <…
考虑对于每个子树从下往上依次考虑 对于叶子节点而言,如果可以染色,那么其\(sg\)值为\(1\),否则为\(0\) 考虑往上合并 如果选择了\(x\),那么后继状态就是其所有子树 如果选了其他子树中的一点,那么后继状态的构成如图所示 也就是,到当前根为止的所有其他子树的\(sg\)值异或上本身 那么,我们可以考虑维护一个数据结构,每次往上的时候,对于一棵子树内的点,异或上其他子树的\(sg\)值 至于查\(sg\)值,可以用一个支持查\(mex\)的东西 还需要合并 \(Trie\)树是一个不…
传送门 既然是树上路径统计问题,不难想到要使用树分治,这里以点分治为例 由点分治的性质,每层只需要考虑经过重心的路径 因为需要维护路径长度在一定范围内的最大权值和,所以要用一个数据结构维护一下到根节点距离在一定范围内的最大权值和 显然线段树是一个不错的选择,对每个子树建立一个线段树,根节点的答案用每个子树的线段树都更新一遍即可 考虑更新子树中的点的答案,这时需要使用除这棵子树外的所有子树的线段树一起更新 我们可以使用线段树合并来维护,给子树任意确定一个顺序,然后通过维护每个子树的前缀和后缀线段树…
51nod 1295 XOR key 这也是很久以前就想做的一道板子题了--学了一点可持久化之后我终于会做这道题了! 给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] 至 A[R] 这R - L + 1个数中,与X 进行异或运算(Xor),得到的最大值是多少? Input 第1行:2个数N, Q中间用空格分隔,分别表示数组的长度及查询的数量(1 <= N <= 50000, 1 <= Q <= 50000). 第…
Kuro is currently playing an educational game about numbers. The game focuses on the greatest common divisor (GCD), the XOR value, and the sum of two numbers. Kuro loves the game so much that he solves levels by levels day by day. Sadly, he's going o…
原文链接 www.cnblogs.com/zhouzhendong/p/UOJ400.html 前言 老年选手没有码力. 题解 先对第一棵树进行边分治,然后,设点 x 到分治中心的距离为 $D[x]$,点 x 在原树上的深度为 $d[x]$,那么 $$d[x]+d[y] - d[LCA(x,y)] - d'[LCA(x,y)] = \frac 12(D[x] + d[x]) + \frac 12 (D[y] + d[y]) - d'[LCA(x,y)]$$ 于是我们考虑将分治区域内的节点在第二棵…