洛谷题目传送门 球啊球 @xzz_233 qaq 高斯消元模板题,关键在于将已知条件转化为方程组. 可以发现题目要求的未知量有\(n\)个,题目却给了我们\(n+1\)个点的坐标,这其中必有玄机. 由高中数学知识可以知道,三点定圆(二维),四点定球(三维)······以此类推,应该是\(n+1\)个点才能确定一个\(n\)维空间下的球. 那么隐藏的另一个关键未知量在哪里呢? 想想圆的标准方程\((x-x_0)^2+(y-y_0)^2=r^2\),除了圆心坐标,半径不也对这个圆起到决定性作用么?…
题目大意:给你$n$个点坐标,要你求出圆心 题解:随机化,可以随机一个点当圆心,然后和每个点比较,求出平均距离$r$,如果到这个点的距离大于$r$,说明离这个点远了,就给圆心施加一个向这个点的力:若小于$r$,说明近了,就施加一个远离这个点的力.所有点比较完后,把假设的圆心按合力方向移动一个距离,距离和当前温度有关.时间越久,温度越低 卡点:第$8$个点精度总是不够,拼命调参,调好后第$3$个点就$Tle$了,最后卡时过的 C++ Code: #include <algorithm> #inc…
题目链接 HDU3571 //824kb 40ms //HDU3571弱化版 跟那个一比这个太水了,练模板吧. //列出$n+1$个二次方程后两两相减,就都是一次方程了. #include <cmath> #include <cstdio> #include <algorithm> const int N=12; int n; double A[N][N],B[N],f[N][N]; void Gauss() { for(int mxrow,j=0; j<n; +…
题目链接 qwq 首先看到这个题,感觉就应该从列方程入手. 我们设给定的点的坐标矩阵是\(x\),然后球心坐标\(a_1,a_2....a_n\) 根据欧几里得距离公式,对于一个\(n维空间\)的第\(i\)个点,他距离球心的距离可以表示为$$\sum_{j=1}^n (x_{ij}-a[j])^2 = r^2 $$ 通过\(n+1\)个点,我们可以轻松列出来\(n+1\)个方程,但是可惜不是线性.我们考虑该怎么优化这个过程 考虑到相邻的两个方程的右边都是相等的,我们不妨将相邻两个方程进行减法,…
题目戳这里 一句话题意 给你 n+1 个 n 维点,需要你求出这个n维球的球心.(n<=10) Solution 这个题目N维的话确实不好想,反正三维就已经把我搞懵了,所以只好拿二维类比. 首先因为球心到边上的点距离相等,所以我们可以列出三个式子: 设 球心坐标为(\(x_0\),\(y_0\)) \((x_1-x_0)^2+(y_1-y_0)^2=r^2\) \((x_2-x_0)^2+(y_2-y_0)^2=r^2\) \((x_3-x_0)^2+(y_3-y_0)^2=r^2\) 三个式子…
题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0\)代表球心. 假设\(n=2\): \[ \begin{align} \sum_{i=1}^n{(a_{0,i}-a_{1,i})}^2&=\sum_{i=1}^n{(a_{0,i}-a_{2,i})}^2\\ \sum_{i=1}^na_{0,j}^2-2\sum_{i=1}^na_{0,i}a…
题意 题目链接 Sol 首先在原矩阵的右侧放一个单位矩阵 对左侧的矩阵高斯消元 右侧的矩阵即为逆矩阵 // luogu-judger-enable-o2 #include<bits/stdc++.h> #define LL long long using namespace std; const int MAXN = 2001, mod = 1e9 + 7; const double eps = 1e-9; inline int read() { char c = getchar(); int…
传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次数是多少呢?可以先算出点的概率 $p(u,v)=\frac{p[u]}{d[u]}+\frac{p[v]}{d[v]}$ $p[u]$表示经过这个点的期望次数,$d[u]$表示这个点的度数 那么点的期望次数怎么求? $p[u]=\sum_{(u,v)\in E}\frac{p[v]}{d[v]}$…
题面传送门 之所以写个题解是因为题解区大部分题解的做法都有 bug(u1s1 周六上午在讨论区里连发两个 hack 的是我,由于我被禁言才让 ycx 代发的) 首先碰到这种期望题,我们套路地设 \(dp_u\) 为从节点 \(u\) 走到节点 \(n\) 经过的节点数的期望值,那么显然有转移方程 \(dp_u=\dfrac{1}{deg_u}(\sum\limits_{(u,v)\in E}dp_v)+1\),由于这个 \(dp\) 方程存在环,故需按照 P3232 游走 的套路进行高斯消元,具…
问题描述 LG4035 BZOJ1013 题解 设答案为\((p_1,p_2,p_3,...,p_n)\) 因为是一个球体,令其半径为\(r\),则有 \[\sum_{i=1}^{n}{(a_i-p_i)}^2={\rm dis}^2\] 拆式子可得 \[\sum_{i=1}^{n}a_i^2-2\times\sum_{i=1}^{n}{a_ip_i}=\sum_{i=1}^{n}p_i^2-{\rm dis}^2\] 于是可以构造出新的方程矩阵: \[f_{i,j}=2 \times (a_{…