[what is machine learning?]】的更多相关文章

1.2 [what is machine learning?] 1.人:observation -->  learing  -->  skill 机器:data --> ML --> improved performance measure /skill 2.什么情况下适合使用机器学习: (1)some 'underlying pattern' to be learned (2)not easy(programmable) definition :不是很容易写出一些规则去处理 (3…
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比和解释.那我根据以前读的书和论文,还有和与导师之间的交流,尝试着说一说这几者的区别吧,毕竟一个好的定义在未来的学习和交流中能够发挥很大的作用.同时补上数据科学和商业分析之间的关系.能力有限,如有疏漏,请包涵和指正. 导论…
参考:https://christophm.github.io/interpretable-ml-book/proto.html EML简介 Example-based Machine Learning (EML) 是从数据集中选择特殊的样本来进行学习.下面看几个例子来理解: 一个医生给一个病人看病,该病人咳嗽症状与常见的不太一样,而且发烧严重.这让医生想起了之前的一个病人也是这种症状,于是他怀疑该病人可能和之前的那个病人是同样的病因. 一个程序猿接到了一个新的客户的需求.他经过分析后发现,这个…
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning).非监督学习(Unsupervised learning)以及半监督学习(Semi-supervised learning)是三类研究比较多,应用比较广的学习技术,wiki上对这三种学习的简单描述如下: 监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出,例如分类. 非监督学习:直接对输入数据集进行建模,例如聚类. 半监督学习:综合利…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also…
机器学习中遗忘的数学知识 最大似然估计( Maximum likelihood ) 最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的. 最大似然估计的原理 给定一个概率分布,假定其概率密度函数(连续分布)或概率质量函数(离散分布)为,以及一个分布参数,我们可以从这个分布中抽出一个具有个值的采样,通过利用,我们就能计算出其概率: 但是,我们可能不知道的值,尽管我们知道…
1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1.1.3    如何选择K值 1.1.4    Spark MLlib 实现 k-means 算法 1.2    Mixture of Gaussians and the EM algorithm 1.3    The EM Algorithm 1.4    Principal Components…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 3 Learning Theory 3.1 Regularization and model selection 模型选择问题:对于一个学习问题,可以有多种模型选择.比如要拟合一组样本点,…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA --…
7 Machine Learning System Design Content 7 Machine Learning System Design 7.1 Prioritizing What to Work On 7.2 Error Analysis 7.3 Error Metrics for Skewed Classed 7.3.1 Precision/Recall 7.3.2 Trading off precision and recall: F1 Score 7.4 Data for ma…
1.谷歌Cloud Machine Learning平台简介: 机器学习的三要素是数据源.计算资源和模型.谷歌在这三个方面都有强大的支撑:谷歌不仅有种类丰富且数量庞大的数据资源,而且有强大的计算机群提供数据存储于数据运算能力,同时,还研究实现了TensorFlow这个机器学习.深度学习算法库.基于这些背景,谷歌也已经训练出了许多实用的可以应用于商业软件的模型,开发者可以直接调用相应的API来开发自己的商业软件. Google Cloud Machine Learning是一个管理平台,它集合了上…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-beginner-train-for-machine-learning-contests 链接内容总结: "学习任何一门学科,framework是必不可少的东西.没有framework的东西,那是研究." -- Jason Hawk One thing is for sure; you ca…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber 写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从 1940 年开始讲起,到…
In Week 6, you will be learning about systematically improving your learning algorithm. The videos for this week will teach you how to tell when a learning algorithm is doing poorly, and describe the 'best practices' for how to 'debug' your learning…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) Octave 4.0.0 安装 win7(文库) Octave学习笔记(文库) octave入门(文库) WIN7 64位系统安装JDK并配置环境变量(总是显示没有安装Java) MathWorks This week we're covering linear regression with mul…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
[machine learning] Loss Function view 有关Loss Function(LF),只想说,终于写了 一.Loss Function 什么是Loss Function?wiki上有一句解释我觉得很到位,引用一下:The loss function quantifies the amount by which the prediction deviates from the actual values.Loss Function中文损失函数,适用于用于统计,经济,机…
本笔记为Coursera在线课程<Machine Learning>中的数据降维章节的笔记. 十四.降维 (Dimensionality Reduction) 14.1 动机一:数据压缩 本小节主要介绍第二种无监督学习方法:dimensionality reduction,从而实现数据的压缩,这样不仅可以减少数据所占磁盘空间,还可以提高程序的运行速度.如下图所示的例子,假设有一个具有很多维特征的数据集(虽然下图只画出2个特征),可以看到x1以cm为单位,x2以inches为单位,它们都是测量长…
本笔记为Coursera在线课程<Machine Learning>中的神经网络章节的笔记. 八.神经网络:表述(Neural Networks: Representation) 本节主要讨论一种叫做神经网络的机器学习算法.首先讨论神经网络的表层结构,在后续的课程中再讨论具体的学习算法.神经网络其实是一个比较古老的算法,它沉寂过一点时间,但现在又成为了许多机器学习的首选技术. 8.1 非线性假设 参考视频: 8 - 1 - Non-linear Hypotheses (10 min).mkv…
本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation (8 min).mkv 本课程讲解的第一个算法为"回归算法",本节将要讲解到底什么是Model.下面,以一个房屋交易问题为例开始讲解,如下图所示(从中可以看到监督学习的基本流程). 所使用的数据集为俄勒冈州波特兰市的住房价格,根据数据集中的不同房屋尺寸所对应的出售价格,绘制出了数据集:假如…
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系? 本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比…
Machine Learning Lab1 打算把Andrew Ng教授的#Machine Learning#相关的6个实验一一实现了贴出来- 预计时间长度战线会拉的比較长(毕竟JOS的7级浮屠还没搞定.) ----------------------------------------------------------------------------------------------------------------------------------- 实验内容: 线性拟合 实验材…
Everything You Wanted to Know About Machine Learning 翻译了理解机器学习的10个重要的观点,增加了自己的理解.这些原则在大部分情况下或许是这样,可是详细问题详细分析才是王道,不加思索的应用仅仅能是一知半解. 所以张小龙才说'我说的都是错的'. note by 王犇 1. How Does Machine Learning Work? 一般来说机器学习算法做这三件事情来建立模型: A set of possible models to look…
Machine Learning/Introducing Logistic Function 打算写点关于Machine Learning的东西, 正好也在cnBlogs上新开了这个博客, 也就更新在这里吧. 这里主要想讨论的是统计学习, 涵盖SVM, Linear Regression等经典的学习方法. 而最近流行的基于神经网略的学习方法并不在讨论范围之内. 不过以后有时间我会以Deep Learning为label新开一个系列, 大概写写我的理解. 总之Machine Learning的la…