BAT系列(一)— CNN】的更多相关文章

1.CNN最成功的应用是在CV 那为什么NLP和Speech的很多问题也可以用CNN解出来?为什么AlphaGo里也用了CNN?这几个不相关的问题的相似性在哪里?CNN通过什么手段抓住了这个共性? 以上几个不相关问题的相关性在于,都存在局部与整体的关系,由低层次的特征经过组合,组成高层次的特征,并且得到不同特征之间的空间相关性. CNN抓住此共性的手段主要有四个:局部连接/权值共享/池化操作/多层次结构. 局部连接使网络可以提取数据的局部特征:权值共享大大降低了网络的训练难度,一个Filter只…
导读 怎么样来理解近期异常火热的深度学习网络?深度学习有什么亮点呢?答案事实上非常简答.今年十月份有幸參加了深圳高交会的中科院院士论坛.IEEE fellow汤晓欧做了一场精彩的报告,这个问题被汤大神一语道破,他说深度学习网络说白了就是一个多层的神经网络. 同20年前相比,计算机硬件性能提升非常多,有了实现处理大数据和并行运算的能力,deep learning才被又一次重视起来.这里,再反复一遍CNN的实质:CNN就是一个更深层次.具有很多其它节点的ANN网络.但与简单的ANN相比:CNN主要是…
前面几篇文章讲到了卷积神经网络CNN,但是对于它在每一层提取到的特征以及训练的过程可能还是不太明白,所以这节主要通过模型的可视化来神经网络在每一层中是如何训练的.我们知道,神经网络本身包含了一系列特征提取器,理想的feature map应该是稀疏的以及包含典型的局部信息.通过模型可视化能有一些直观的认识并帮助我们调试模型,比如:feature map与原图很接近,说明它没有学到什么特征:或者它几乎是一个纯色的图,说明它太过稀疏,可能是我们feature map数太多了(feature_map数太…
人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的tensorflow版亦支持此种网络模型,万事俱备,就放开手做吧.前面说过,我们需要通过大量的训练数据训练我们的模型,因此首先要做的就是把训练数据准备好,并将其输入给CNN.前面我们已经准备好了2000张脸部图像,但没有进行标注,并且还需要将数据加载到内存,以方便输入给CNN.因此,第一步工作就是加载并…
从产品上线前的接口开发和调试,到上线后的 bug 定位.性能优化,网络编程知识贯穿着一个互联网产品的整个生命周期.不论你是前后端的开发岗位,还是 SQA.运维等其他技术岗位,掌握网络编程知识均是岗位的基础要求,即使是产品.设计等非技术岗位,在灰度环境体验产品时也需要理解页面缓存.Host 切换等网络基础概念. 「猫哥网络编程系列」一直是我想沉淀的一个技术知识点,因为我认为:网络编程相关知识(尤其是 HTTP 协议),是互联网产品开发当中最重要的基础知识(没有之一).掌握这方面的基础知识,对一个新…
概述 Tomcat 的三个最重要的启动脚本: startup.bat catalina.bat setclasspath.bat 上一篇咱们分析了 startup.bat 脚本 这一篇咱们来分析 catalina.bat 脚本. 至于 setclasspath.bat 这个脚本, 相信看完这一篇, 就可以自己看懂这个脚本了. 可以点击 [Tomcat 源码分析系列] (附件) : setclasspath.bat 脚本 查看附注释的 setclasspath.bat 脚本 catalina.ba…
[深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框架. 将深度卷积神经网络(Convolutional Neural Networks, 简称CNNs)用于图像识别在研究领域吸引着越来越多目光.由于卷积神经网络结构非常适合模型并行的训练,因此以模型并行+数据并行的方式来加速Deep CNNs训练,可预期取得较大收获.Deep CNNs的单机多GPU…
人脸检测及识别python实现系列(4)——卷积神经网络(CNN)入门 上篇博文我们准备好了2000张训练数据,接下来的几节我们将详细讲述如何利用这些数据训练我们的识别模型.前面说过,原博文给出的训练程序使用的是keras库,对我的机器来说就是tensorflow版的keras.训练程序建立了一个包含4个卷积层的神经网络(CNN),程序利用这个网络训练我的人脸识别模型,并将最终训练结果保存到硬盘上.在我们实际动手操练之前我们必须先弄明白一个问题——什么是卷积神经网络(CNN)? CNN(Conv…
VM基本是BAT面试必考的内容,今天我们先从JVM内存模型开启详解整个JVM系列,希望看完整个系列后,可以轻松通过BAT关于JVM的考核. BAT必考JVM系列专题 1.JVM内存模型 2.JVM垃圾回收算法 3.JVM垃圾回收器 4.JVM参数详解 5.JVM性能调优 JVM内存结构 由上图可以清楚的看到JVM的内存空间分为3大部分: 堆内存 方法区 栈内存 其中栈内存可以再细分为java虚拟机栈和本地方法栈,堆内存可以划分为新生代和老年代,新生代中还可以再次划分为Eden区.From Sur…
经典分类CNN模型系列其五:Inception v2与Inception v3 介绍 Inception v2与Inception v3被作者放在了一篇paper里面,因此我们也作为一篇blog来对其讲解. Google家的Inception系列模型提出的初衷主要为了解决CNN分类模型的两个问题,其一是如何使得网络深度增加的同时能使得模型的分类性能随着增加,而非像简单的VGG网络那样达到一定深度后就陷入了性能饱和的困境(Resnet针对的也是此一问题):其二则是如何在保证分类网络分类准确率提升或…