题目(vjudge) 题面 题意: 你有K个字母,你需要用K个字母组成L长度的字符串,定义对于该字符串的任意前缀P 必须满足    ,输出方案数%1000000007的值. 思路: 首先可以想到一种简单的dp方程  dp [ len ] [ a ]  [b ]  表示当前字符串长度为len  个数为最多的字母有 a个  个数次多的有b个  (那么个数最少的有k-a-b个)状态数有 100*100,没办法矩阵快速幂加速dp. 考虑对于某个固定长度 len  如果确定 a,容易发现 b = (len…
题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant string: among all the substrings of an elegant string, none of them is a permutation of "0, 1,…, k". Let function(n, k) be the number of elegant s…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: 108  Time Limit: 10000/5000 MS (Java/Others)  Memory Limit: 65536/65536 K (Java/Others) 问题描述 小明很喜欢国际象棋,尤其喜欢国际象棋里面的大象(只要无阻挡能够斜着走任意格),但是他觉得国际象棋里的大象太凶残了…
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n.给定n,k,p,求满足要求的方案数%30031.n<=10^9,k<=p<=10. [算法]状压DP+矩阵快速幂 [题解]开始没看到p<=10,其实很显然p>k的话第一车就不满足要求了.考虑相邻停靠点没有关键信息,只能状压. 因为车都是从头开到尾的,所以直接考虑i~i-p+1的…
[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法]AC自动机+DP+矩阵快速幂 [题解]其实题意的数据范围不太清晰,反正开200个点就足够了. 因为要匹配禁忌串,所以对禁忌串集合建立AC自动机,标记禁忌串结尾节点,以及下传到所有能fail到的点(这些点访问到都相当于匹配了禁忌串). 令f[i][j]表示匹配到节点i,长度为j的串的数量,先预处理a[i][j…
BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻的0).例如,000,001 ,101,都是交错序列,而110则不是.对于一个长度为n的交错序列,统计其中0和1出现的次数,分别记为x和y. 给定参数a.b,定义一个交错序列的特征值为x^ay^b.注意这里规定任何整数的0次幂都等于1(包括0^0=1). 显然长度为n的交错序列可能有多个.我们想要知道,所有长…
题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分析: dp+矩阵快速幂. 假如现在的数是m,模x余数是n,那么再从下一个block中选一个数a,a模x余数为b,那么新的数的余数就为(m∗10+a)%x,也就是(n∗10+b)%x,所以实际上我们只需要直接对余数进行操作.容易得到状态转移方程,其中dp[i][j]表示从第i个block中选择一个数后…
题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y-1)或者(x+1,y)或者(x+1,y+1)三个位子之一. 现在一共有N段线段,每条线段都是平行于X轴的.我们如果此时x是在这段线段之内的话,我们此时走到的点(x,y)需要满足0<=y<=Ci. 现在保证一段线段的终点,一定是下一段线段的起点.问我们从起点走到终点的行走方案数. 题解:简单的dp+…
[BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2-Am有M位,不出现是指X1X2-Xn中没有恰好一段等于A1A2-Am. A1和X1可以为0 \(0 \leq X_i \leq 9,0\leq Ai\leq 9,m \leq 20,n \leq 10^9\) 分析 先考虑暴力的思路,设\(dp[i][j]\)表示前i位数与不吉利数字匹配了前…
由于方块最多涉及3行,于是考虑将每两行状压起来,dfs搜索每种状态之间的转移. 这样一共有2^12种状态,显然进行矩阵快速幂优化时会超时,便考虑减少状态. 进行两遍bfs,分别为初始状态可以到达的状态,和可以到达终止状态的状态. 同时出现在两次bfs中的状态即为有效状态,一共有141种. 这样就可以跑出来了. 未加矩阵快速幂 50分 ..,..] of longint= ((-,,),(-,,),(,,),(,,),(-,,),(-,,),(,,),(-,,)); dy:..,..] of lo…
Clarke and digits 问题描述 克拉克是一名人格分裂患者.某一天,克拉克变成了一个研究人员,在研究数字. 他想知道在所有长度在[l,r]之间的能被7整除且相邻数位之和不为k的正整数有多少个. 输入描述 第一行一个整数T(1≤T≤5),表示数据的组数. 每组数据只有一行三个整数l,r,k(1≤l≤r≤109,0≤k≤18) 输出描述 每组数据输出一行一个数,表示答案.由于答案太大,你只需对10^9+7取模即可. 输入样例 2 1 2 5 2 3 5 输出样例 13 125 Hint…
Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4100   Accepted: 1051 Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties,…
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j)表示dp(x-1, j)对dp(x, i)的贡献.然后用矩阵快速幂就可以了. 时间复杂度O(M3logN + M) ------------------------------------------------------------------- #include<bits/stdc++.h>…
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少种项链. 分析:这是我做过的最为综合的一道题目(太渣了),首先数位dp筛选出区间[L,R]内的幸运数字总数,dp[pos]表示非限制条件下还有pos位含有的幸运数字个数,然后记忆化搜索一下,随便乱搞的(直接dfs不知会不会超时,本人做法900+ms险过,应该直接dfs会超时),再不考虑旋转相同的情况,可以…
http://hihocoder.com/contest/hiho42/problem/1 给定一个n,问我们3*n的矩阵有多少种覆盖的方法 第41周做的骨牌覆盖是2*n的,状态转移方程是dp[i] = dp[i-1] + dp[i-2],递推数列可以用矩阵快速幂来加速计算 我们可以用状态dp来做这一题,如果某个格子上被铺了骨牌,就标记为1,否则为0 那么每一列一共有8个状态. 两种状态的表示法 第一种: dp[i][s] 表示填满第i行后,第i+1行的状态为s, 那么s的转移情况如下, 0->…
这道到是不用看题解,不过太经典了,早就被剧透一脸了 这道题很像ac自动机上的dp(其实就是) 然后注意到n很大,节点很小,于是就可以用矩阵快速幂优化了 时间复杂度为o(m^3 *log n); 蒟蒻kpm写得少,改了好久= = CODE: #include<cstdio>#include<iostream>#include<cstring>#include<algorithm>using namespace std;int n,m,mod;#define m…
题意大致是这样的,一共要放 m 段括号序列,每一段放 n 个括号,也就是放 n*m个括号,再每一段中的 n 个位置分别有放左括号和右括号的代价,问最终摆放出合法的括号序列的最小代价是多少. 另外保证,n小于20,m小于1e7,m是整数 这个大概是我一年前多做的,当时在21组上T了,然后就放弃了,我也不记得当时怎么做的了,也不想看以前的代码. 很明显 n 个段是循环的,所以肯定每个段作为一个整体考虑.为了保证括号序列的正确性,可以认为左括号为+1,右括号为-1,则正确性即过程中前缀和始终为正,最终…
题目大意 给你一个网格,每个格子有概率是\(1\)或是\(0\).告诉你每个点是\(0\)的概率,求\(1\)的连通块个数\(\bmod d=0\)的概率. 最开始所有格子的概率相等.有\(q\)次修改,每次修改一个格子的概率.要求输出初始时和每次修改后的概率. \(n\leq 200000,m\leq 3,d\leq 10,q\leq 1000\) 题解 很容易想到状压DP:前\(i\)行在第\(i\)行的状态为\(j\)时连通块个数模\(d=k\)的概率. 当\(m=3\)时每行状态有\(9…
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医生告诉他,他吃这些零食的时候,如果在连续的三小时内他三种都吃了,并且在中间一小时 吃的是巧克力,他就会食物中毒.并且,如果河神在连续三小时内吃到相同种类的食物,他就会不开心. 假设每种类零食的数量都是无限的,那么如果经过n小时,让河神满意的零食吃法有多少种呢?(开心又不 会食物中毒的吃法)答案可能过…
题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * dp[i]; 然而...t,但这个式子明显可以用矩阵快速幂加个氮气一下加速一下... 把所有的点输入之后 sort一下,那么就能把这条路分成很多段 每一段以地雷为分界线 1 - x[0]  x[0]+1 - x[1]  x[1]+1 - x[2] ````````` 然后求出安全通过每一段的概率  …
Description ​ 有一个\(~n~\)行\(~m~\)列的棋盘,棋盘上可以放很多棋子,每个棋子的攻击范围有\(~3~\)行\(~p~\)列.用一个\(~3 \times p~\)的矩阵给出了棋子攻击范围的模板,棋子被默认在模板中的第一行,第\(~k~\)列,模板中棋子能攻击到的位置标记为\(~1\),不能攻击到的位置是\(~0\) .输入数据保证模板中的第二行第\(~k~\)列是\(~1\).在要求棋子互相不能攻击到的前提下,求摆放棋子的方案数. \(~1 \leq p \leq m,…
题面欺诈系列... 因为一个点最多只能连到前k个点,所以只有当前的连续k个点的连通情况是对接下来的求解有用的 那么就可以计算k个点的所有连通情况,dfs以下发现k=5的时候有52种. 我们把它们用类似于并查集的方式表达(比如12132代表点1和点3连通,2和5连通,3自己),然后再压缩一下. 但要注意的是,12132和23213这两种实际对应的是一种连通情况,我们只要把它都化成字典序最小的那种就可以了 然后考虑增加一个新点以后状态的转移,可以枚举这个点与前k个点(始状态S)的连边情况,其中有一些…
https://codeforces.com/contest/1117/problem/D 题意 有n个特殊宝石(n<=1e18),每个特殊宝石可以分解成m个普通宝石(m<=100),问组成n颗宝石有多少种方法 题解 数据很大:找规律or矩阵快速幂 转移方程: dp[i]=dp[i-1]+dp[i-m] 因为n<=1e18可以用矩阵快速幂 构造矩阵如图: \[ \left[ \begin{matrix} f[i-1] & f[i-2] & \cdots & f[i…
传送门 看到n的范围的时候吓了一跳,然后发现可以矩阵快速幂优化. 我们用类似于状压dp的方法构造(1(1(1<<m)∗(1m)*(1m)∗(1<<m)m)m)大小的矩阵. 然后用快速幂转移. 代码: #include<bits/stdc++.h> #define mod 1000000007 #define N 128 #define ll long long using namespace std; int T,up,n,m; struct Matrix{ ll va…
题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at…
显然当x中没有相邻的1时该式成立,看起来这也是必要的. 于是对于第一问,数位dp即可.第二问写出dp式子后发现就是斐波拉契数列,矩阵快速幂即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; int read() { ,f=;…
题面 传送门 正文 其实就是让你求有多少条长度为t的路径,但是有一个特殊条件:不能走过一条边以后又立刻反着走一次(如果两次经过同意条边中间隔了别的边是可以的) 如果没有这个特殊条件,我们很容易想到dp做法:设$dp\left[i\right]\left[j\right]$表示第i个时刻(初始算0),走到第j个点的答案总数 但是这里要限制不能反复走,那么直接设点会导致信息丢失 那我们怎么样才能让保存当前所在点的情况下,不丢失最后一条边的信息呢? 答案非常显然,我们只要设$dp\left[i\rig…
注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include <stdlib.h> #include <string.h> #include <algorithm> #define MAXN 140 #define MOD 30031 using namespace std; struct Matrix { int num[MAXN]…
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2157 这道题目很多人的题解都是矩阵快速幂写的,矩阵快速幂倒是麻烦了许多了.先给DP的方法 dp[i][j] 表示走过了i个点到了j点的步数 #include <iostream> #include <string.h> #include <stdlib.h> #include <stdio.h> #include <algorithm> #inclu…
这道题的DP是很好想的,令dp[i][j]表示第i个位置摆第j种妹子的方法数,j为0表示不摆妹子的方法数. dp[i][j]=sigma(dp[i-1][k])(s[j][k]!='1').容易看出这是个递推式,于是可以用矩阵快速幂加速DP转移. 复杂度O(m^3*logn). # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include &…