OpenCV人脸识别Eigen算法源码分析】的更多相关文章

1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本集合的各个样本点到均值的距离之平均.以一个国家国民收入为例,均值反映了平均收入,而均方差/方差则反映了贫富差距,如果两个国家国民收入均值相等,则标准差越大说明国家的国民收入越不均衡,贫富差距较大.以上公式都是用来描述一维数据量的,把方差公式推广到二维,则可得到协方差公式: 协方差表明了两个随机变量之…
1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻的功能.从OpenCV2.4开始,加入了新的类FaceRecognizer,该类用于人脸识别,使用它可以方便地进行相关识别实验. 原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于或等于中心像素值,则该像素点的位置被标记为1,否则为0…
https://blog.csdn.net/loveliuzz/article/details/73875904…
Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 1.4. 实现代码1 1.1. 原理,主要使用像素模糊后的差别会变小 通过计算横向前后俩点像素的差异..然后累加即可.. 1.2. 具体流程 图片灰度化,这样可以只保留hsv分量了...然后读取v分量,就是明亮度了.. Hs色相和饱和度全部去除了..   比较v分量的差异即可.. 1.3. 提升性…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with ALS-WR (三),这个写了三篇,基本都是写QR分解,然后矩阵进过处理得到U或者M的过程,但是还是没有讲出个所以然来.mahout官网上说其是根据这篇文献得来的Large-scale Parallel Collaborative Filtering for the Netflix Prize,本来我是想…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with ALS-WR这个算法中的那个QR分析,真心是太复杂了.以至于国庆后面三天基本都是在郁闷中过来的,想着自己的矩阵学的是有多差呀...后来算法验证弄懂之后才发觉,尼玛,java太坑爹了吧,矩阵求个逆,有那么复杂么!!! 下面来开始验证:首先应该获得了两个变量分别是Ai和Vi,如果这两个变量不知道是啥东西,可…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算法的并行主要就应该是ParallelALSFactorizationJob这里的并行了,下图是这个Job的大部分操作: 这里分析并行就是看每个job任务是否可以出现多个map或者reduce即可. (1)首先分析前面三个itemRatings,对应的输入是原始文件,如果原始文件很大的话,那么这个任务…
diff.js列表对比算法 源码分析 npm上的代码可以查看 (https://www.npmjs.com/package/list-diff2) 源码如下: /** * * @param {Array} oldList 原始列表 * @param {Array} newList 新列表 * @param {String} key 键名称 * @return {Object} {children: [], moves: [] } * children 是源列表 根据 新列表返回 移动的新数据,比…
原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形容建筑物用“米”,观测分子.原子等用“纳米”.更形象的例子比如Google地图,滑动鼠标轮可以改变观测地图的尺度,看到的地图绘制也不同:还有电影中的拉伸镜头等等…… 尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程.尺度越大图像越模糊.   为什么要讨论…
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SIFT特征点赋了值,包含位置.尺度和方向的信息.接下来的步骤是关键点描述,即用用一组向量将这个关键点描述出来,这个描述子不但包括关键点,也包括关键点周围对其有贡献的像素点.用来作为目标匹配的依据(所以描述子应该有较高的独特性,以保证匹配率),也可使关键点具有更多的不变特性,如光照变化.3D视点变化等. SIFT…
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<关键点搜索与定位>,我们已经找到了关键点.为了实现图像旋转不变性,需要根据检测到的关键点局部图像结构为特征点方向赋值.也就是在findScaleSpaceExtrema()函数里看到的alcOrientationHist()语句: // 计算梯度直方图 ) + layer], Point(c1, r1), cvRound(SIFT_ORI_…
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一步<DoG尺度空间构造>,我们得到了DoG高斯差分金字塔: 如上图的金字塔,高斯尺度空间金字塔中每组有五层不同尺度图像,相邻两层相减得到四层DoG结果.关键点搜索就在这四层DoG图像上寻找局部极值点. DoG局部极值点 寻找DoG极值点时,每一个像素点和它所有的相邻点比较,当其大于(或小于)它的图像域和尺度域的所有相邻点时,即为极值点.如下图所…
在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐从室内演变到室外,从单一限定场景发展到广场.车站.地铁口等场景,人脸检测面临的要求越来越高,比如:人脸尺度多变.数量冗大.姿势多样包括俯拍人脸.戴帽子口罩等的遮挡.表情夸张.化妆伪装.光照条件恶劣.分辨率低甚至连肉眼都较难区分等.在这样复杂的环境下基于Haar特征的人脸检测表现的不尽人意.随着深度学…
SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition from Local Scale-Invariant Features>)提出的高效区域检测算法,在2004年(<Distinctive Image Features from Scale-Invariant Keypoints>)得以完善. SIFT特征对旋转.尺度缩放.亮度变化等保持不变性…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 本篇开始之前先来验证前篇blog的分析结果,编写下面的测试文件来进行对上篇三个job的输出进行读取: package mahout.fansy.item; import java.io.IOException; import java.util.Map; import org.apache.hadoop.io.Writable; import mahout.fansy.utils.read.ReadA…
一.简介 贝叶斯定理是关于随机事件A和事件B的条件概率的一个定理.通常在事件A发生的前提下事件B发生的概率,与在事件B发生的前提下事件A发生的概率是不一致的.然而,这两者之间有确定的关系,贝叶斯定理就是这种关系的陈述.其中,L(A|B)表示在B发生的前提下,A发生的概率.L表示要取对数的意思. 关键词解释: 1.p(A),p(B)表示A,B发生的概率,也称先验概率或边缘概率. 2.p(B|A)表示在A发生的前提下,B发生的概率,也称后验概率. 基本公式:p(A|B) = p(AB)/p(B) 图…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 经过了SimilarityJob的计算共生矩阵后,就可以开始下面一个过程了,这个过程主要是共生矩阵的乘法,要说这个共生矩阵的乘法是啥意思?我也不是很清楚,不清楚就看代码呗. 首先明确共生矩阵,即共生矩阵的输入文件(也是上面个SimilarityJob的输出文件): similarityMatrix================= {102={101:0.14201473202245876,106:0…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 本篇分析上篇的分析是否正确,主要是编写上篇输出文件的读取以及添加log信息打印相关变量. 首先,编写下面的测试文件分析所有的输出: package mahout.fansy.item; import java.io.IOException; import java.util.Map; import mahout.fansy.utils.read.ReadArbiKV; import org.apach…
Dubbo提供了四种负载均衡:RandomLoadBalance,RoundRobinLoadBalance,LeastActiveLoadBalance,ConsistentHashLoadBalance. 这里顺便说下Dubbo的负载均衡是针对单个客户端的,不是全局的. 以下代码基于2.7.2-SNAPSHOT版本. LoadBalance LoadBalance接口只提供了一个对外暴露的方法: <T> Invoker<T> select(List<Invoker<…
http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 2013-03-23 17:44 16963人阅读 评论(28) 收藏 举报  分类: 机器视觉(34)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   KAZE系列笔记: OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 OpenCV学习笔记…
上一篇文章 SURF算法与源码分析.上 中主要分析的是SURF特征点定位的算法原理与相关OpenCV中的源码分析,这篇文章接着上篇文章对已经定位到的SURF特征点进行特征描述.这一步至关重要,这是SURF特征点匹配的基础.总体来说算法思路和SIFT相似,只是每一步都做了不同程度的近似与简化,提高了效率. 1. SURF特征点方向分配 为了保证特征矢量具有旋转不变性,与SIFT特征一样,需要对每个特征点分配一个主方向.为些,我们需要以特征点为中心,以$6s$($s = 1.2 *L /9$为特征点…
FP-Growth是一种常被用来进行关联分析,挖掘频繁项的算法.与Aprior算法相比,FP-Growth算法采用前缀树的形式来表征数据,减少了扫描事务数据库的次数,通过递归地生成条件FP-tree来挖掘频繁项.参考资料[1]详细分析了这一过程.事实上,面对大数据量时,FP-Growth算法生成的FP-tree非常大,无法放入内存,挖掘到的频繁项也可能有指数多个.本文将分析如何并行化FP-Growth算法以及Mahout中并行化FP-Growth算法的源码. 1. 并行化FP-Growth 并行…
年初时,朋友圈见到的最多的就是新的一年新的FlAG,年末时朋友圈最多的也是xxxx就要过去了,你的FLAG实现了吗? 这个公众号2016就已经创建了,但截至今年之前从来没发表过文章,现在想想以前很忙,但更多的也是迷茫,想要写,不知道写点什么,或者写点东西出来了,自己看起来总觉得有点傻,2019年初,给自己立的FLAG是今年一定要把这个公众号运营起来,现在想起来,工作也多年了,有了一些积累,也有一点东西可写,另一个更多的是对自己的总结,分享自己的过程,所幸,今年坚持下来了,好多次想放弃,家人,朋友…
如果只是想看ribbon的自定义负载均衡配置,请查看: https://www.cnblogs.com/yangxiaohui227/p/13186004.html 注意: 1.RestTemplate 所在jar为:org.springframework.web.client.RestTemplate 说明了其并不依赖springcloud 2. 所以2个springboot项目其实是可以调用的,而并不需要依赖springCloud,如图: product服务: order服务: 浏览器访问o…
死磕以太坊源码分析之Kademlia算法 KAD 算法概述 Kademlia是一种点对点分布式哈希表(DHT),它在容易出错的环境中也具有可证明的一致性和性能.使用一种基于异或指标的拓扑结构来路由查询和定位节点,这简化了算法并有助于证明.该拓扑结构有一个特点:每次消息交换都能够传递或强化有效信息.系统利用这些信息进行并发的异步查询,可以容忍节点故障,并且故障不会导致用户超时. KAD算法要处理的问题 如何分配存储内容到各个节点,新增/删除内容如何处理 如何找到存储文件的节点/地址/路径 节点状态…
死磕以太坊源码分析之Ethash共识算法 代码分支:https://github.com/ethereum/go-ethereum/tree/v1.9.9 引言 目前以太坊中有两个共识算法的实现:clique和ethash.而ethash是目前以太坊主网(Homestead版本)的POW共识算法. 目录结构 ethash模块位于以太坊项目目录下的consensus/ethash目录下. algorithm.go 实现了Dagger-Hashimoto算法的所有功能,比如生成cache和datas…
Diff 算法源码(结合源码写的简易版本) 备注:文章后面有详细解析,先简单浏览一遍整体代码,更容易阅读 // Vue3 中的 diff 算法 // 模拟节点 const { oldVirtualDom, virtualDom } = require('./dom') // 这是节点的类型(源码中还有更多的类型,这里只使用了两种类型作为示例) const ShapeFlags = { TEXT_CHILDREN: 1 << 3, ARRAY_CHILDREN: 1 << 4 } f…
今天总算是机缘巧合的找到了照样一篇纲要性质的文章. 如是能早一些找到就好了.不过“在你认为为时已晚的时候,其实还为时未晚”倒是也能聊以自慰,不过不能经常这样迷惑自己,毕竟我需要开始跑了! 就照着这个大纲往下走走,说不定会有意想不到的收获,然后把多视点的问题加进去,或许应该能有所成效. 嗯,其他的太多的东西想来也无用. 我觉得现在比较重要的事情是,顺着这样一篇文章继续我要做的东西. 原文<RobHess的SIFT源码分析:综述>地址: http://blog.csdn.net/masibuaa/…
OpenCV人脸识别的原理 . 在之前讲到的人脸测试后,提取出人脸来,并且保存下来,以供训练或识别是用,提取人脸的代码如下: void GetImageRect(IplImage* orgImage, CvRect rectInImage, IplImage* imgRect,double scale) { //从图像orgImage中提取一块(rectInImage)子图像imgRect IplImage *result=imgRect; CvRect size; size.x=rectInI…
我们在上一期中讲 $rootscope时,看到$rootscope是依赖$prase,其实不止是$rootscope,翻看angular的源码随便翻翻就可以发现很多地方是依赖于$parse的.而$parse的源码打开一看,它的代码量有接近两千行.翻开angular的api文档,官方只给出了简短的解释"Converts Angular expression into a function(将一个angular的表达式转化为一个函数)",心中神兽奔腾----就这么点功能为什么要"…