clc;clear; D=1000;N=10000;thre=10e-8;zeroRatio=0.6; X = randn(N,D); r=rand(1,D); r=sign(1-2*r).*(2+2*r); perm=randperm(D);r(perm(1:floor(D*zeroRatio)))=0; Y = X*r' + randn(N,1)*.1; % small added noise lamda=1;stepsize=10e-5; %%% y=x*beta' %%% Loss=0.…
[本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                                                                                \(  \min\limits_x f(x)  \) .如果\( f(x) \)可导,那么一个简单的方法是使用Gradient Descent (GD)方法,也即使用以下的式子进行…
假设我们要求解以下的最小化问题: $min_xf(x)$ 如果$f(x)$可导,那么一个简单的方法是使用Gradient Descent (GD)方法,也即使用以下的式子进行迭代求解: $x_{k+1} = x_k - a\Delta f(x_k)$ 如果$\Delta f(x)$满足L-Lipschitz,即: 那么我们可以在点$x_k$附近把$f(x)$近似为: 把上面式子中各项重新排列下,可以得到: 这里$\varphi (x_k)$不依赖于x,因此可以忽略. 显然,$\hat f(x,…
FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE? In order to explain the differences between alternative approaches to estimating the parameters of a model,…
https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种(mini-batch gradient descent和stochastic gradient descent),关于Batch gradient descent(批梯度下降,BGD)就不细说了(一次迭代训练所有样本),因为这个大家都很熟悉,通常接触梯队下降后用的都是这个.这里主要介绍Mini-b…
Gradient Descent(Batch Gradient)也就是梯度下降法是一种常用的的寻找局域最小值的方法.其主要思想就是计算当前位置的梯度,取梯度反方向并结合合适步长使其向最小值移动.通过柯西施瓦兹公式可以证明梯度反方向是下降最快的方向. 经典的梯度下降法利用下式更新参量,其中J(θ)是关于参量θ的损失函数,梯度下降法通过不断更新θ来最小化损失函数.当损失函数只有一个global minimal时梯度下降法一定会收敛于最小值(在学习率不是很大的情况下) 上式的梯度是基于所有数据的,如果…
梯度下降法(Gradient Descent)是用于最小化代价函数的方法. When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$…
L1正则化是一种常用的获取稀疏解的手段,同时L1范数也是L0范数的松弛范数.求解L1正则化问题最常用的手段就是通过加速近端梯度算法来实现的. 考虑一个这样的问题: minx  f(x)+λg(x) x∈Rn,f(x)∈R,这里f(x)是一个二阶可微的凸函数,g(x)是一个凸函数(或许不可导),如上面L1的正则化||x||. 此时,只需要f(x)满足利普希茨(Lipschitz)连续条件,即对于定义域内所有向量x,y,存在常数M使得||f'(y)-f'(x)||<=M·||y-x||,那么这个模型…
An overview of gradient descent optimization algorithms Table of contents: Gradient descent variantsChallenges Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Gradient descent optimization algorithms Momentum Nesterov a…
原文地址:An overview of gradient descent optimization algorithms An overview of gradient descent optimization algorithms Note: If you are looking for a review paper, this blog post is also available as an article on arXiv. Update 15.06.2017: Added deriva…