[CC]区域生长算法——点云分割】的更多相关文章

基于CC写的插件,利用PCL中算法实现: void qLxPluginPCL::doRegionGrowing() { assert(m_app); if (!m_app) return; const ccHObject::Container& selectedEntities = m_app->getSelectedEntities(); size_t selNum = selectedEntities.size(); ) { m_app->dispToConsole("P…
1.点云分割的精度 在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法.基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出来).基于欧式算法的点云分割面对有牵连的点云就无力了(比如风筝和人,在不用三维形态学去掉中间的线之前,是无法分割风筝和人的).基于法线等信息的区域生长算法则对平面更有效,没法靠它来分割桌上的碗和杯子.也就是说,上述算法更关注能不能分割,除此之外,我们还需要一个方法来解决分割的“好不好”这个问题.也就…
1.点云分割的精度 在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法.基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出来).基于欧式算法的点云分割面对有牵连的点云就无力了(比如风筝和人,在不用三维形态学去掉中间的线之前,是无法分割风筝和人的).基于法线等信息的区域生长算法则对平面更有效,没法靠它来分割桌上的碗和杯子.也就是说,上述算法更关注能不能分割,除此之外,我们还需要一个方法来解决分割的“好不好”这个问题.也就…
CloudCompare中手动点云分割功能ccGraphicalSegmentationTool, 点击应用按钮后将现有的点云分成segmented和remaining两个点云, //停用点云分割功能void MainWindow::deactivateSegmentationMode(bool state) 是通过ccPointCloud的可视选择集来实现的.其中用到了点云的swap需要参考! //创建新的点云,可视的选择集 ccGenericPointCloud* ccPointCloud:…
1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割的搞法大概有两种:剑宗——自低向上:先将图像聚类成小的像素团再慢慢合并,气宗——自顶向下:用多尺度模板分割图像,再进一步将图像优化分割成不同物体.当然,还有将二者合而为一的方法:training with data set. 这第三种方法也不好,太依赖于已知的物体而失去了灵活性.家庭机器人面对家里越…
1.超体聚类——一种来自图像的分割方法 超体(supervoxel)是一种集合,集合的元素是“体”.与体素滤波器中的体类似,其本质是一个个的小方块.与之前提到的所有分割手段不同,超体聚类的目的并不是分割出某种特定物体,其对点云实施过分割(over segmentation),将场景点云化成很多小块,并研究每个小块之间的关系.这种将更小单元合并的分割思路已经出现了有些年份了,在图像分割中,像素聚类形成超像素,以超像素关系来理解图像已经广为研究.本质上这种方法是对局部的一种总结,纹理,材质,颜色类似…
分割给人最直观的影响大概就是邻居和我不一样.比如某条界线这边是中华文明,界线那边是西方文,最简单的分割方式就是在边界上找些居民问:"小伙子,你到底能不能上油管啊?”.然后把能上油管的居民坐标连成一条线,自然就区分开了两个地区.也就是说,除了之前提到的基于采样一致的分割方式以外,应该还存在基于邻近搜索的分割方式.通过对比某点和其最近一点的某些特征,来实现点云的分割.图像所能提供的分割信息仅是灰度或RGB向量,而三维点云却能够提供更多的信息.故点云在分割上的优势是图像所无法比拟的(重要的事情要说三遍…
博客转载自:http://www.cnblogs.com/ironstark/p/5027269.html 1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割的搞法大概有两种:剑宗——自低向上:先将图像聚类成小的像素团再慢慢合并,气宗——自顶向下:用多尺度模板分割图像,再进一步将图像优化分割成不同物体.当然,还有将二者合而为一的方法:trainin…
博客转载自:http://www.cnblogs.com/ironstark/p/5013968.html 1.超体聚类——一种来自图像的分割方法 超体(supervoxel)是一种集合,集合的元素是“体”.与体素滤波器中的体类似,其本质是一个个的小方块.与之前提到的所有分割手段不同,超体聚类的目的并不是分割出某种特定物体,其对点云实施过分割(over segmentation),将场景点云化成很多小块,并研究每个小块之间的关系.这种将更小单元合并的分割思路已经出现了有些年份了,在图像分割中,像…
博客转载自:http://www.cnblogs.com/ironstark/p/5000147.html 分割给人最直观的影响大概就是邻居和我不一样.比如某条界线这边是中华文明,界线那边是西方文,最简单的分割方式就是在边界上找些居民问:"小伙子,你到底能不能上油管啊?”.然后把能上油管的居民坐标连成一条线,自然就区分开了两个地区.也就是说,除了之前提到的基于采样一致的分割方式以外,应该还存在基于邻近搜索的分割方式.通过对比某点和其最近一点的某些特征,来实现点云的分割.图像所能提供的分割信息仅是…