UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4053   Accepted: 1318 Description The binomial coefficient C(m,n) is defined as m! C(m,n) = -------- n!(m-n)! Given four natural numbers p, q…
UVa 10375 Choose and divide 题目: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19601 思路: maxn=10000 如果计算maxn!再保存的话显然装不下. 但答案由阶乘的积或商组成,所以可以用唯一分解定理求解.大题思路就是把目前答案的质因子的指数用数组e保存,乘除都对e操作. 需要注意的是筛法求素数优化后的写法. 代码: #include<iostream> #include<…
uva10375 Choose and Divide(唯一分解定理) 题意: 已知C(m,n)=m! / (n!*(m-n!)),输入整数p,q,r,s(p>=q,r>=s,p,q,r,s<=10000), 计算C(p,q)/C(r,s).输出保证不超过10^8,保留5位小数. 分析: 本题时间上基本上没有太大的限制,可以暴力求解C(m,n); #include<cstdio> #include<cstring> #include<iostream>…
题意:求C(p,q)/C(r,s),4个数均小于10000,答案不大于10^8 思路:根据答案的范围猜测,不需要使用高精度.根据唯一分解定理,每一个数都可以分解成若干素数相乘.先求出10000以内的所有素数,用a数组表示唯一分解式中个素数的指数,求出每个分子部分的素因子,并且相应的素数的指数加一.分母则减一.最后求解唯一分解式的值. #include<stdio.h> #include<string.h> #include<math.h> ; int pr[N],p[N…
紫上给得比较奇怪,其实没有必要用唯一分解定理.我觉得这道题用唯一分解只是为了表示大数. 但是分解得到的幂,累乘的时候如果顺序很奇怪也可能溢出.其实直接边乘边除就好了.因为答案保证不会溢出, 设定一个精度范围,如果中间结果超过了精度范围就保存起来,最后sort一遍从两端同时乘就不会溢出了. /********************************************************* * --------------Tyrannosaurus--------- * * aut…
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1316 题意: 已知C(m,n) = m!/(n!(m-n)!),输入整数p, q, r, s(p≥q,r≥s,p,q,r,s≤10000),计算C(p,q)/C(r,s).输出保证不超过1e8,保留5位小数. 分析: 首先,求出10000以内的所有素数prime,然后用数组e表示当…
n! 分解素因子 快速幂 ei=[N/pi^1]+ [N/pi^2]+ …… + [N/pi^n]  其中[]为取整 ei 为数 N!中pi 因子的个数: #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; ; int sign[maxn]; int pri[maxn]…
题目链接:https://vjudge.net/contest/156903#problem/E 题意:已知 求:C(p,q)/C(r,s) 其中p,q,r,s都是10^4,硬算是肯定超数据类型的. 可以这样处理:利用唯一分解式约分: 首先将所有数,唯一分解:最后,算素数的乘积: #include <bits/stdc++.h> using namespace std; ; vector<int> primes; int e[maxn]; bool is_prime(int n)…
UVA.10791 Minimum Sum LCM (唯一分解定理) 题意分析 也是利用唯一分解定理,但是要注意,分解的时候要循环(sqrt(num+1))次,并要对最后的num结果进行判断. 代码总览 #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> #define nmax 505 #define ll long long using namespace…
首先说一下什么是唯一分解定理 唯一分解定理:任何一个大于1的自然数N,如果N不是质数,那么N可以分解成有限个素数的乘积:例:N=(p1^a1)*(p2^a2)*(p3^a3)......其中p1<p2<p3...... 所以当我们求两个很大的数相除时  唯一分解定理是一个不错的选择,不会爆范围 下面具体说一下怎么求唯一分解定理: 首先我们需要知道所有的素数:  用埃式算法打表求得: void is_prime() { cnt=; ;i<=maxn;i++) { if(!vis[i]) {…