洛谷题目传送门 这题推式子恶心..... 考虑分治,每次统计跨过\(mid\)的所有区间的答案和.\(i\)从\(mid-1\)到\(l\)枚举,统计以\(i\)为左端点的所有区间. 我们先维护好\([i,mid]\)区间内最小值\(mn\)和最大值\(mx\).我们可以想到,对于某一个左端点,它的右端点\(j\)在一定的范围内,最小值和最大值都不会变.这里就看到一些可以重复利用并快速计算的信息了. 维护两个指针\(p,q\),分别表示\([mid+1,r]\)内元素值第一个小于\(mn/\)大…
题面 有多组数据:Poj 无多组数据:洛谷 题解 点分治板子题,\(calc\)的时候搞一个\(two\ pointers\)扫一下统计答案就行了. #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using std::min; using std::max; using std::swap; using std::sort; typedef long lo…
题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.html https://blog.csdn.net/VictoryCzt/article/details/82939586 不知为何自己的总是很慢. 觉得是 n 和 m 表示次数的话,len<=n+m:n 和 m 表示项数的话,len<n+m:应该是这样? 这里是 mid-L+1 项和 R-L+1…
洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 200005; int n, k, m; struct node{ int x, y, z, id, w; bool operator < (const node &a…
题目链接 看到这种找树链的题目肯定是想到点分治的. 我码了一下午,\(debug\)一晚上,终于做到只有两个点TLE了. 我的是不完美做法 加上特判\(A\)了这题qwq 记录每个字母在母串中出现的所有位置,我用的邻接表实现. 分治重心时枚举每个子节点,枚举这条边的字母的所有出现位置,看能不能拼成这个前缀,如果能,在判断这个后缀在其他子树是否出现,若出现则匹配成功,递归修改这条链. 太暴力了.TLE是肯定的 晚上和出题人聊了很久\(qwq\) #include <cstdio> #includ…
题意 题目链接 Sol 神仙题..Orz yyb 考虑点分治,那么每次我们只需要统计以当前点为\(LCA\)的点对之间的贡献以及\(LCA\)到所有点的贡献. 一个很神仙的思路是,对于任意两个点对的路径上的颜色,我们只统计里根最近的那个点的贡献. 有了这个思路我们就可以瞎搞了,具体的细节很繁琐,但是大概思路是事实维护每个点的子树中的点会产生的贡献.比如某个点的颜色在它到根的路径上第一次出现,那么它子树中的所有点\(siz[x]\),都会对外面的点产生贡献. 统计子树的时候只需要先消除掉子树的影响…
还是照着CDQ的思路来. 但是有一些改动: 要求4个方向的,但是可爱的CDQ分治只能求在自己一个角落方向上的.怎么办?旋转!做4次就好了. 统计的不是和,而是——max!理由如下: 设当前点是(x,y),目标点是(x',y'),那么所求的|x-x'|+|y-y'|首先用旋转大法化为x-x'+y-y',然后我们发现这个东西其实就是x+y-x'-y'=(x+y)-(x'+y'),而x+y我们是已知的.所以我们求一下max(x'+y')即可.具体实现是对树状数组魔改. 然后交上去发现狂T不止... 疯…
传送门 又一道点分治. 直接维护子树内到根的所有路径长度,然后排序+双指针统计答案. 代码如下: #include<bits/stdc++.h> #define N 40005 using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^4…
P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\dots,f[n-1]\),其中\(f[i]=\sum_{j=1}^if[i-j]g[j]\) 边界为 \(f[0]=1\) .答案模 \(998244353\) . 输入输出格式 输入格式: 第一行一个正整数 \(n\) . 第二行共 \(n−1\) 个非负整数 \(g[1],g[2],\dots,…
题目大意:给定长度为$n-1$的数组$g_{[1,n)}$,求$f_{[0,n)}$,要求: $$f_i=\sum_{j=1}^if_{i-j}g_j\\f_0=1$$ 题解:分治$FFT$博客,发现这道题就是求$f*g=f-1$($f-1$就是没有常数项的$f$),改写一下式子:$$f*g\equiv f-1\pmod{x^n}\\f-f*g\equiv1\pmod{x^n}\\f*(1-g)\equiv1\pmod{x^n}\\f\equiv(1-g)^{-1}\pmod{x^n}$$ 卡点…