Kruskal算法构造最小生成树】的更多相关文章

Kruskal算法来构造最小生成树,我总结了分为以下步骤: (1)建图,构造Kruskal边集,边集元素应该包括该边的起始顶点.终止顶点.权值: (2)将边集按权值从小到大的顺序进行排序: (3)从小到大依次从Kruskal边集中取边加入最小生成树集合,判断条件:将该边加入最小生成树集合,与生成树集合中原有的边不构成环: (4)最小生成树集合中元素(构成生成树的边)的个数为原图顶点数-1时,代表最小生成树构造完毕. Kruskal核心伪代码如下: Kruskal(MGragh *Gra) { 对…
c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路.这时,自然会考虑,如何在最节省经费的前提下建立这个公路网络. 每2个城市之间都可以设置一条公路,相应地都要付出一定的经济代价.n个城市之间,最多可以设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少? 克鲁斯卡尔(kruskal)算法的大致思路: 把每条边的权重…
c/c++ 用普利姆(prim)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: ​ 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路.这时,自然会考虑,如何在最节省经费的前提下建立这个公路网络. ​ 每2个城市之间都可以设置一条公路,相应地都要付出一定的经济代价.n个城市之间,最多可以设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少? 普利姆(prim)算法的大致思路: ​ 大致思想是:设图G顶点…
主要参考资料:数据结构(C语言版)严蔚敏   ,http://blog.chinaunix.net/uid-25324849-id-2182922.html   代码测试通过. package 图的建立与实现; import java.util.*; public class MGraph { final int MAXVEX = 100; final int INFINITY = 65535; int[] vexs = new int[MAXVEX]; //顶点表 int[][] arc =…
题目:聪明的猴子 链接:https://ac.nowcoder.com/acm/problem/19964 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个雨林的地 表还是被大水淹没着,部分植物的树冠露在水面上.猴子不会游泳,但跳跃能力比较强,它们仍然可以在露出水面 的不同树冠上来回穿梭,以找到喜欢吃的果实.现在,在这个地区露出水面的有N棵树,假设每棵树本身的直径都 很小,可以忽略不计.我们在这块区域上建立直角坐标系,则每一棵树的位置由其所对应的坐标表…
注意: 注意数组越界问题(提交出现runtimeError代表数组越界) 刚开始提交的时候,边集中边的数目和点集中点的数目用的同一个宏定义,但是宏定义是按照点的最大数定义的,所以提交的时候出现了数组越界问题,以后需要注意啦. Description The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads betwe…
/* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <string> #include <algorithm> #include <queue> #include <set> #include <stack> using namespace…
graph to tree非常有趣! 距离的度量会极大地影响后续的分析,欧式距离会放大差异,相关性会缩小差异,导致某些细胞群分不开. 先直观看一下,第一个是Prim,第二个是Kruskal.但是肯定都是有局限性的!我也在尝试新的方法,提升表现. 先看看算法的差异: 参考: 话说最小生成树的prim算法和Kruskal算法的区别? 最小生成树之Prim算法和Kruskal算法 算法,代码的文章一大堆,但能从高处俯瞰的极少. 这两个算法都没有数据的偏向性,对数据没有假设. 我们的单细胞的数据特征明显…
//Kruskal算法按照边的权值从小到大查看一遍,如果不产生圈(重边等也算在内),就把当前这条表加入到生成树中. //如果判断是否产生圈.假设现在要把连接顶点u和顶点v的边e加入生成树中.如果加入之前的u和v不在同一个连通分量里,那么加入e也不会产生圈. //反之,如果u和v在同一个连通分量里,那一定会产生圈.可以用并查集高效判断是否属于同一个连通分量. #define _CRT_SECURE_NO_WARNINGS /* 7 10 0 1 5 0 2 2 1 2 4 1 3 2 2 3 6…
Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小生成树中一定有n-1条边. Prim算法需要两个线性表来进行辅助: visited: 标记已经加入生成树的顶点:(它的功能可以由tree取代) 初始状态:生成树根节点为真,其它为0. tree: 记录生成树,tree[x]保存顶点x的直接根节点下标,若x为树的根节点则tree[x]为其自身. 初始状…