首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
我对Burnside定理的理解
】的更多相关文章
我对Burnside定理的理解
我想了想,发现可以证明burnside定理. 置换:n个元素1,2,-,n之间的一个置换表示1被1到n中的某个数a1取代,2被1到n中的某个数a2取代,直到n被1到n中的某个数an取代,且a1,a2,-,an互不相同. 置换群:置换群的元素是置换,运算是置换的连接.例如: 可以验证置换群满足群的四个条件. 重点是这个:│Ek│·│Zk│=│G│ k=1-n 这个我不会证明,但是很好理解:每个不动点都可以找到一个对应的置换,差不多就这个意思. 该公式的一个很重要的研究对象是群的元素个数,有很…
poj 2409+2154+2888(Burnside定理)
三道burnside入门题: Burnside定理主要理解置换群置换后每种不动点的个数,然后n种不动点的染色数总和/n为answer. 对于旋转,旋转i个时不动点为gcd(n,i). 传送门:poj 2409 #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <queue> #include <cstdlib> #de…
【Burnside定理】&【Pólya定理】
Burnside & Pólya (详细内容请参阅<组合数学>或2008年cyx的论文,这里只写一些我学习的时候理解困难的几个点,觉得我SB的请轻鄙视……如果有觉得不科学的地方欢迎留言) Burnside: 我们要证明的是:$$N(G,C)=\frac{1}{|G|} \sum_{f \in G}|C(f)|$$ 难点一:非等价着色数=等价类数目($N(G,C)$),这其实是从等价类的定义来的...因为一个等价类表示着一种与众不同的染色方案,当然有多少个等价类就有多少种非等价染色方案啦…
BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】
题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i)\)为置换\(i\)下不变的方案数,那么 \[L = \frac{1}{m}\sum\limits_{i = 1}^{m} f(i)\] 在一个置换下一个方案不变,当且仅当该置换的任意一个循环节内部颜色相同 记循环节个数为\(c_i\),色数为\(k\)且不限使用,那么该置换下不变的方案数为 \[…
HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少种项链. 分析:这是我做过的最为综合的一道题目(太渣了),首先数位dp筛选出区间[L,R]内的幸运数字总数,dp[pos]表示非限制条件下还有pos位含有的幸运数字个数,然后记忆化搜索一下,随便乱搞的(直接dfs不知会不会超时,本人做法900+ms险过,应该直接dfs会超时),再不考虑旋转相同的情况,可以…
埋锅。。。BZOJ1004-置换群+burnside定理+
看这道题时当时觉得懵逼...这玩意完全看不懂啊...什么burnside...难受... 于是去看了点视频和资料,大概懂了置换群和burnside定理,亦步亦趋的懂了别人的代码,然后慢慢的打了出来...高兴的一匹. 回归正题啊,这个题如果大家不懂置换群的概念...是很难看的懂的,M种洗牌,代表了M种置换,加上自己本身一种,构成看M+1种置换,如果一种可以通过任意的洗牌法洗成另一种的看成一类(这就是等价类的定义),问有多少种染色方法??? 这道题很明显嘛,就是算等价类的数目,这个需要用到burns…
对CAP定理的理解
CAP定理的常规解释是任何分布式系统只能在一致性(Consitency),可用性(Availability)和分区容忍性(Partition Tolerance)中三选二.这个解释很让人费解,笔者在看了一些文章后谈谈我对它的理解,还请斧正. 从问题出发 假设我们用一台服务器A对外提供存储服务,为了避免这台服务器宕机导致服务不可用,我们又在另外一台服务器B上运行了同样的存储服务.每次用户在往服务器A写入数据的时候,A都往服务器B上写一份,然后再返回客户端.一切都运行得很好,用户的每份数据都存了两份…
Lucas定理的理解与应用
Lucas定理:用于计算组合数模除素数后的值,其实就是把(n,m)分别表示为p进制,累乘各位的可能取的个数,得到最终的结果: 推论:(n & m) == m则C(n,m)为奇数:即C(n,m) %2 = 1,即m二进制的每一位n都必须为1,所以n & m = m; 应用: Xiao Ming's Hope 题意:问C(n,0),C(n,1)...C(n,n)中有多少个为奇数?(1 <= n <= 1e8) ACM_cxlove的证明 思路:用朴素的n & m == m来…
bzoj 1004 1004: [HNOI2008]Cards burnside定理
1004: [HNOI2008]Cards Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1668 Solved: 978[Submit][Status] Description 小 春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答 案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最…
bzoj1004 [HNOI2008]Cards Burnside定理+背包
题目传送门 思路:首先是Burnside引理,要先学会这个博客. Burnside引理我们总结一下,就是 每种置换下不动点的数量之和除以置换的总数,得到染色方案的数量. 这道题,显然每种洗牌方式都是一种置换,我们先数出每种置换的不动点.什么叫不动点,就是在这个置换下不停的变化后状态不变的染色方案.容易想出每个置换都有一个循环节,每张牌在某种洗牌方式下的位置是循环的,那要使得这个成为一个不动点,就需要使得同一循环节上的牌的颜色相同.那么这个问题就转化成了一个三维背包问题了. 背包的转…