分析 考虑使用欧拉函数的计算公式化简原式,因为有: \[lcm(i_1,i_2,...,i_k)=p_1^{q_{1\ max}} \times p_2^{q_{2\ max}} \times ... \times p_m^{q_{m\ max}}\] 其实就是分解质因数,丢到那个式子里: \[\varphi(lcm(i_1,i_2,...,i_k))=\prod (p_i-1)p_i^{q_{i\ max}-1}\] 容易发现可以分开讨论每个质数,计算每个\(p_i^j\)在多少种\(i_1…
洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\phi(i)\)吗? 关于通过筛素数线性求欧拉函数的一点思路总结在蒟蒻的blog里 剩下的就是记一个前缀和了. #include<cstdio> #define R register const int N=1000001; int pr[N],phi[N]; long long ans[N]; bo…
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 输入格式: 一行两个整数,l.r. 输出格式: 一行一个整数表示答案. 输入输出样例 输入样例#1: 233 2333 输出样例#1: 1056499 输入样例#2: 2333333333 2333666666 输出样例#2: 153096296 说明 对于30%的数据,. 对于60%的数据,.…
正解:欧拉函数 解题报告: 传送门$QwQ$ 首先显然十分套路地变下形是趴 $\begin{align*}&=\sum_{i=1}^n\sum_{j=1}^n gcd(i,j)\\&=\sum_{i=1}^n\sum_{j=1}^n\sum_{d=1}^{min(i,j)} [gcd(i,j)==d]\cdot d\\&=\sum_{d=1}^{n}d\cdot \sum_{i=1}^n\sum_{j=1}^n [gcd(i,j)==d]\\\end{align*}$ 然后就欧拉函…
https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i,j)\) 首先加入方括号并枚举g,提gcd的g: \(\sum\limits_{g=1}^{n}g\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ij[gcd(i,j)==g]\) 后面的方括号里的g也可以提出来,注意前面有两个id,所以: \(\sum\lim…
我们枚举所有gcd \(k\),求所有\(gcd=k\)的数对,记作\(f(k)\),那么\(ans=\sum_{i=1}^{n}(f(i)-1)*i\).为什么减1呢,观察题目,发现\(j=i+1\),所以自己与自己的数对是不算的. \(f(k)\)怎么求? 若\(a,b\)互质,则\(gcd(ak,bk)=k\). 我们枚举\(a,b\)中较大的那个,记作\(i\),那么另一个数就有\(φ(i)\)种可能,显然,\(1≤i≤n/k\),所以\(f(k)=\sum_{i=1}^{n/k}φ(i…
https://www.luogu.org/problem/P1170 #include<bits/stdc++.h> using namespace std; ],b[],c[],d[],n; int main() { cin>>n; ; i<=n; i++) { int a,b,c,d; cin>>a>>b>>c>>d; if(a==c||b==d) //特判,排除兔和人在同行或同列的情况,防止__gcd函数出错 ) cou…
1615: 刘备闯三国之三顾茅庐(三) Time Limit: 1000 MS  Memory Limit: 128 MBSubmit: 45  Solved: 8[Submit][Status][Web Board] Description 刘备(161年-223年6月10日),字玄德,东汉末年幽州涿郡涿县,西汉中山靖王刘胜的后代.刘备一生极具传奇色彩,早年颠沛流离.备尝艰辛最终却凭借自己的谋略终成一方霸主.那么在那个风云激荡的年代,刘备又是如何从一个卖草鞋的小人物一步一步成为蜀汉的开国皇帝呢…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4272    Accepted Submission(s): 1492 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y)…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, y)有多少组,不考虑顺序. 思路:a = c = 1简化了问题,原问题可以转化为在[1, b/k]和[1, d/k]这两个区间各取一个数,组成的数对是互质的数量,不考虑顺序.我们让d > b,我们枚举区间[1, d/k]的数i作为二元组的第二位,因为不考虑顺序我们考虑第一位的值时,只用考虑小于i的情…
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/article/details/5787722 题意 a,b,c,d,k五个数,a与c可看做恒为1,求在a到b中选一个数x,c到d中选一个数y,使得gcd(x,y)等于k,求x和y有多少对. 首先可以想到选取的必是k的倍数,假设是x和y倍,则x和y一定是互质的在,那么就变成了求1到b/k和1到d/k的之…
题目链接:https://www.nowcoder.com/acm/contest/142/A 题目描述 A ternary string is a sequence of digits, where each digit is either 0, 1, or 2. Chiaki has a ternary string s which can self-reproduce. Every second, a digit 0 is inserted after every 1 in the str…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5064    Accepted Submission(s): 1818 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y)…
F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1695 Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest c…
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a <= b <= 100000, c=1, c <= d <= 100000, 0 <= k <= 100000) 思路:由于x与y的最大公约数为k,所以xx=x/k与yy=y/k一定互质.要从a/k和b/k之中选择互质的数,枚举1~b/k,当选择的yy小于等于a/k时,能够…
题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1695 题解 我们观察式子\(gcd(x,y)=k\) 很显然,\(gcd(x/k, y/k) = 1\) 我们令b < d,令x<y(避免重复计数) 分类讨论. 1) y < b 可以看出答案就是\(\sum_{i \in [1, b]} \phi(i)\) 2)\(y \in [b, d…
Description Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime to B if A, B share no common positive divisors except 1. Input For each test case, ther…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 15488    Accepted Submission(s): 5948 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x,…
题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_i}\) . 或者询问 \([l, r]\) 之间所有 \(a_i\) 的和对 \(p\) 取模的结果 . \(n, m \le 5 \times 10^4, p \le 2^{14}\) 题解 考虑欧拉降幂(扩展欧拉定理),不会的可以看 这篇博客 . 然后对于这些不断叠加的指数,有如下式子 \[…
P4917 天守阁的地板 题目背景 在下克上异变中,博丽灵梦为了找到异变的源头,一路打到了天守阁 异变主谋鬼人正邪为了迎击,将天守阁反复颠倒过来,而年久失修的天守阁也因此掉下了很多块地板 异变结束后,恢复了正常大小的小碗回到了天守阁,想要修复这里的地板,她需要知道自己要采购的地板数量(一个惊人的数字),于是,她找到了精通oi的你来帮忙 题目描述 为了使万宝槌能发挥出全部魔力,小碗会将买来的地板铺满一个任意边长的正方形(地板有图案,因此不允许旋转,当然,地板不允许重叠)来达到最大共鸣 现在,她能够…
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#1: 4 输出样例#1: 4 说明 对于样例\((2,2),(2,4),(3,3),(4,2)\) \(1<=N<=10^7\) 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. Solution 方法1:莫比乌斯反演,方法和yy的gcd一样 方法2:…
题目链接 做过\(n\)遍这种题了... 答案就是\(\sum_{i=1}^{n}\sum_{j=1}^{n/i}[\varphi(j)*i]\) 线筛欧拉函数求前缀和直接算就行. #include <cstdio> const int MAXN = 2000010; int v[MAXN], prime[MAXN], cnt, n; long long ans, phi[MAXN]; int main(){ scanf("%d", &n); phi[1] = 1;…
https://www.luogu.org/problemnew/show/P2158 好像以前有个妹子收割铲也是欧拉函数. 因为格点直线上的点,dx与dy的gcd相同,画个图就觉得是欧拉函数.但是要注意对称轴还有左下角那个破点! #include<bits/stdc++.h> using namespace std; #define ll long long const int MAXN=40000+5; int phi[MAXN]; int pri[MAXN],pritop; bool n…
https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ 不会,看题解: 类似求gcd为p的求法: $ f(n) = \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) =\sum\limits_{i=1}^{N} d \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}…
https://www.luogu.org/problem/P2158 #include<bits/stdc++.h> #define int long long using namespace std; int n,ans; int Star_Platinum(int n) { //求欧拉函数 int sum=n; ; i*i<=n; i++) ) { sum-=sum/i; ) n/=i; } ) sum-=sum/n; return sum; } signed main() { s…
Codeforces 洛谷:咕咕咕 CF少有的大数据结构题. 思路 考虑一些欧拉函数的性质: \[ \varphi(p)=p-1\\ \varphi(p^k)=p^{k-1}\times (p-1)=p^k \times \frac{p-1}{p},k>0\\ \varphi(ab)=\varphi(a)\varphi(b),gcd(a,b)=1\\ \dots \] 有上面三个就够了. 要求 \[ \varphi(\prod a_i) \] 可以考虑把\(\prod a_i\)拆成 \[ \p…
欧拉函数: 对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. POJ 2407.Relatives-欧拉函数 代码O(sqrt(n)): ll euler(ll n){ ll ans=n; ;i*i<=n;i++){ //这里i*i只是为了减少运算次数,直接i<=n也没错, ){ //因为只有素因子才会加入公式运算.仔细想一下可以明白i*i的用意. ans=ans/i*(i-); ) n/=i; //去掉倍数 } } ) ans=ans/n*(n-); return ans; }…
题目: SPOJ-GCDEX (洛谷 Remote Judge) 分析: 求: \[\sum_{i=1}^{n}\sum_{j=i+1}^{n}gcd(i,j)\] 这道题给同届新生讲过,由于种种原因只讲了 \(O(n)\) 预处理欧拉函数 \(O(n)\) 查询的暴力做法,顺带提了一句 "这题能根号查询" 被教练嘴了 QAQ .以及小恐龙给我说有 \(O(n\log n)\) 预处理 \(O(1)\) 查询的另一种写法. 重点是前几天某学长讲课讲这道题,才知道有 \(O(n)\) 预…
本题题解 题目传送门:https://www.luogu.org/problem/P2303 给定一个整数\(n\),求 \[ \sum_{i=1}^n \gcd(n,i) \] 蒟蒻随便yy了一下搞出来个\(O(\sqrt{n})\)的算法 这题数据怎么这么水 首先看到gcd我们就下意识的对它反演一波对吧 第一步 \[ \sum_{i=1}^n \gcd(n,i) = \sum_{d|n} \varphi(d) \frac{n}{d} \] 这里提供两种化法,得到的结果都是这个. 法一 根据欧…
欧拉函数&欧拉定理&降幂 总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300214 这年头不总结一下是真的容易忘,老了老了,要AFO了... 欧拉函数 介绍 欧拉函数写做\(\varphi[x]\),表示\(0\)到\(x\)中与\(x\)互质的数的个数 那么我们会有引理(对于素数\(p\)): \[\left\{ \begin{aligned} \varphi[p]=p-1\ --------------①\\ \varph…