机器学习实战笔记-5-Logistic回归】的更多相关文章

1:简单概念描写叙述 如果如今有一些数据点,我们用一条直线对这些点进行拟合(改线称为最佳拟合直线),这个拟合过程就称为回归.训练分类器就是为了寻找最佳拟合參数,使用的是最优化算法. 基于sigmoid函数分类:logistic回归想要的函数可以接受全部的输入然后预測出类别.这个函数就是sigmoid函数,它也像一个阶跃函数.其公式例如以下: 当中: z = w0x0+w1x1+-.+wnxn,w为參数, x为特征 为了实现logistic回归分类器,我们能够在每一个特征上乘以一个回归系数,然后把…
目录 Logistic 回归 本章内容 回归算法 Logistic 回归的一般过程 Logistic的优缺点 基于 Logistic 回归和 Sigmoid 函数的分类 Sigmoid 函数 Logistic 回归分类器 图5-1 两种坐标尺度下的 Sigmoid 函数图 基于最优化方法的最佳回归系数确定 梯度上升法 图5-2 梯度上升图 梯度下降算法 训练算法:使用梯度上升找到最佳参数 图5-3 数据集图 梯度上升算法的伪代码 程序5-1 Logistic 回归梯度上升优化算法 分析数据:画出…
机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018-10-26机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharri…
机器学习实战笔记-k-近邻算法 目录 1. k-近邻算法概述 2. 示例:使用k-近邻算法改进约会网站的配对效果 3. 示例:手写识别系统 4. 小结 本章介绍了<机器学习实战>这本书中的第一个机器学习算法:k-近邻算法,它非常有效而且易于掌握.首先,我们将探讨k-近邻算法的基本理论,以及如何使用距离测量的方法分类物品:其次我们将使用Python从文本文件中导入并解析数据:再次,本文讨论了当存在许多数据来源时,如何避免计算距离时可能碰到的一些常见错误:最后,利用实际的例子讲解如何使用k-近邻算…
解释 Logistic回归用于寻找最优化算法. 最优化算法可以解决最XX问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设计发动机使得油耗最少而功率最大? 我们可以看到最XX问题,有寻找最小(最短时间)和最大等. 解决最小类问题会使用梯度下降法.可以想象为在一个山坡上寻找最陡的下坡路径. 同理,解决最大类问题会使用梯度上升法.可以想象为在一个山坡上寻找最陡的上坡路径. 寻找最优化算法,可以通过试图找到一个阶跃函数(step function),由于阶跃函数只返回…
Logistic回归的一般过程 1.收集数据:采用任意方法收集 2.准备数据:由于需要进行距离计算,因此要求数据类型为数值型.另外,结构化数据格式则最佳 3.分析数据:采用任意方法对数据进行分析 4.训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数 5.测试算法:一旦训练步骤完成,分类将会很快. 6.使用算法:首 先,我们需要输入一些数据,并将其转换成对应的结构化数值:接着,基于训练好的回归系数就可以对这些数值进行简单回归计算,判定它们属于哪个类别:在这之后,我们就可以在输…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
---------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction ----------------------------------------------…
Logistic回归 优缺点 适用范围 优点:计算代价不高,易于理解和实现. 缺点:容易欠拟合,分类精度可能不高. 适用于:数值型和标称型数据. 仅用于二分类 原理: 每个特征都乘以一个回归系数>>将结果相加>>总和代入到Sigmoid函数,得到范围在(0,1)中的数值>>预测分类结果\(\hat{y}\).即\(Z= w_{0}x_{0} + w_{1}x_{1} + \ldots + w_{n}x_{n} = \sum_{i = 0}^{n}{w_{i}x_{i}…