摘要: 无状态网络功能是一个新的网络功能虚拟化架构,解耦了现有的网络功能设计到无状态处理组件以及数据存储层,在打破紧密耦合的同时,实现了更具可伸缩性和可恢复性的网络功能基础设施.无状态NF处理实例是围绕高效管道构建的,利用DPDK实现高性能网络I/O,打包为Docker容器以便于部署,以及基于预期请求模式优化的数据存储接口,以高效访问基于Ramcloud的数据存储.网络范围的编排器监视实例的负载和故障,管理实例以扩展和提供弹性,并利用基于OpenFlow的网络将流量定向到实例. 我们实现了三个示…
3 Dynamic Network Embedding by Modeling Triadic Closure Process link:https://scholar.google.com.sg/scholar_url?url=https://ojs.aaai.org/index.php/AAAI/article/view/11257/11116&hl=zh-TW&sa=X&ei=HSiOYtaAE4a4ygS4j4ioAg&scisig=AAGBfm3pULFHq0jI…
目的: 通过用Mlpconv层来替代传统的conv层,可以学习到更加抽象的特征.传统卷积层通过将前一层进行了线性组合,然后经过非线性激活得到(GLM),作者认为传统卷积层的假设是基于特征的线性可分.而Mlpconv层使用多层感知机,是一个深层的网络结构,可以近似任何非线性的函数.在网络中高层的抽象特征代表它对于相同concept的不同表现具有不变性(By abstraction we mean that the feature is invariant to the variants of th…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
文章来源:https://blog.csdn.net/u013058162/article/details/80470426 3D Deep Leaky Noisy-or Network 论文阅读 原文:Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network 博文参考:Doublle Tree的博客中Evaluate the Malignancy of Pulmonary Nodu…
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失缺乏对label信息的考虑(???). (2)Contribution: 提出一个新的端到端网络框架,称为 CNN and RNN Fusion(CRF),结合了Siamese.Softmax 联合损失函数.分别对全身和身体局部进行模型训练,获得更有区分度的特征表示. Method (1)框架: (…
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要内容 参考文献 (1) 解决问题 大多数先前的工作,要么是没有考虑到网络的高阶相似度(如谱聚类,DeepWalk,LINE,Node2Vec),要么是考虑了但却使得算法效率很低,不能拓展到大规模网络(如GraRep). (2) 主要贡献 Contribution 1. 将许多现有的NRL算法架构总结…
[论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都只考虑了网络的局部拓扑结构信息,忽略了原始网络中潜藏的社区信息. (2) 主要贡献 Contribution: 为了结合聚类将表示学习应用于基于图结构的社区发现任务上,本文在随机游走过程中结合了社区信息,使得同社区节点具有相近的表示向量,方便聚类任务. (3) 算法原理 CARE算法框架主要包含两个…
[论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 本篇论文是针对现有表征算法计算开销比较大,不能够很好应用到大规模网络上的问题. (2) 主要贡献 Contribution: 提出一种快速且可扩展网络表征框架,LouvainNE,能够为包含数百亿边的网络生成高质量的表征向量. (3) 算法…
[论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能捕获具有高度非线性的网络结构,导致学习到一个局部最优的节点向量表示. (2) 主要贡献 Contribution: 提出一个半监督的深度模型SDNE,包含多个非线性层,同时优化一阶和二阶相似度的目标函数来保留原始网络的局部和全局网络结构,因此可能能够捕获高度非线性的网络结构. (3) 算法原理 简单…