kNN#约会网站预测数据】的更多相关文章

#约会网站预测数据 def classifyPersion(): resultList = ['not at all','in small doses','in large doses'] #input()函数允许用户输入文本行命令并返回用户所输入的命令 percentTats = float(input("percentage of time spent playing video games?")) ffMiles = float(input("frequent year…
''' 机器学习实战——KNN约会网站优化 ''' import operator import numpy as np from numpy import * from matplotlib.font_manager import FontProperties import matplotlib.lines as mlines import matplotlib.pyplot as plt # largeDoses :极具魅力 :smallDoses :魅力一般 :didntLike:不喜欢…
前半部分是简介, 后半部分是案例 KNN近邻算法: 简单说就是采用测量不同特征值之间的距离方法进行分类(k-Nearest Neighbor,KNN) 优点: 精度高.对异常值不敏感.无数据输入假定 缺点:时间复杂度高.空间复杂度高 1.当样本不平衡时,比如一个类的样本容量很大,其他类的样本容量很小,输入一个样本的时候,K个临近值中大多数都是大样本容量的那个类,这时可能就会导致分类错误.改进方法是对K临近点进行加权,也就是距离近的点的权值大,距离远的点权值小. 2.计算量较大,每个待分类的样本都…
使用kNN算法进行分类的原理是:从训练集中选出离待分类点最近的kkk个点,在这kkk个点中所占比重最大的分类即为该点所在的分类.通常kkk不超过202020 kNN算法步骤: 计算数据集中的点与待分类点之间的距离 按照距离升序排序 选出距离最小的kkk个点 计算这kkk个点所在类别出现的频率(次数) 返回出现频率最高的点的类别 代码的实现: 首先导入numpy模块和operator模块,建立一个数据集 from numpy import * import operator def createD…
K-近邻算法概述 简单的说,K-近邻算法采用不同特征值之间的距离方法进行分类 K-近邻算法 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用范围:数值型和标称型. k-近邻算法的一般流程 收集数据:可使用任何方法 准备数据:距离计算所需要的数值,最好是结构化的数据格式. 分析数据:可以使用任何方法. 训练算法:此步骤不适用于K-近邻算法 使用算法:首先需要输入样本数据和节后话的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分…
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window10.0 实验内容和原理 (1)实验内容: 使用k近邻算法改进约会网站的配对效果.海伦使用约会网址寻找适合自己的约会对象,约会网站会推荐不同的人选.她将曾经交往过的的人总结为三种类型:不喜欢的人.魅力一般的人.极具魅力的人.尽管发现了这些规律,但依然无法将约会网站提供的人归入恰当的分类.使用KNN算…
使用Python实现k-近邻算法的一般流程为: 1.收集数据:提供文本文件 2.准备数据:使用Python解析文本文件,预处理 3.分析数据:可视化处理 4.训练算法:此步骤不适用与k——近邻算法 5.测试算法:使用海伦提供的部分数据作为测试样本.测试样本与非测试样本的区别在于:测试样本是已经完成分类的数据,如果预测分类与实际类别不一样,则标记为一个错误. 6.使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据来判断对方是否为自己喜欢的类型. 一.数据集介绍: 海伦女士一直使用在线约会…
目录 实战内容 用sklearn自带库实现kNN算法分类 将内含非数值型的txt文件转化为csv文件 用sns.lmplot绘图反映几个特征之间的关系 参考资料 @ 实战内容 海伦女士一直使用在线约会网站寻找适合自己的约会对象.尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人.经过一番总结,她发现自己交往过的人可以进行如下分类: 不喜欢的人 魅力一般的人 极具魅力的人 海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共…
KNN项目实战——改进约会网站的配对效果 1.项目背景: 海伦女士一直使用在线约会网站寻找适合自己的约会对象.尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人.经过一番总结,她发现自己交往过的人可以进行如下分类: 不喜欢的人 魅力一般的人 极具魅力的人 2.项目数据  海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行. datingTestSet.txt数据集下载  海伦收集的样本数据主要包含以下3种特征…
今天读<机器学习实战>读到了使用k-临近算法改进约会网站的配对效果,道理我都懂,但是看到代码里面的数据样本集 datingTestSet2.txt 有点懵,这个样本集在哪里,只给了我一个文件名,没有任何内容啊. 上网百度了这个文件名,发现很多博主的博客里可以下载,我很好奇,同样是读<机器学习实战>,他们是从哪里下载的数据样本集呢?就重新读了这本书.终于在“关于本书”最后的“作者在线里面”找到了网址!就是这个,大家需要可以来这里下载. http:/www.manning.com/Ma…