转 opencv红绿灯检测】的更多相关文章

整个项目源码:GitHub 引言 前面我们讲完交通标志的识别,现在我们开始尝试来实现交通信号灯的识别 接下来我们将按照自己的思路来实现并完善整个Project. 在这个项目中,我们使用HSV色彩空间来识别交通灯,可以改善及提高的地方: 可以采用Faster-RCNN或SSD来实现交通灯的识别 首先我们第一步是导入数据,并在RGB及HSV色彩空间可视化部分数据.这里的数据,我们采用MIT自动驾驶课程的图片, 总共三类:红绿黄,1187张图片,其中,723张红色交通灯图片,429张绿色交通灯图片,3…
opencv直线检测在c#.Android和ios下的实现方法 本文为作者原创,未经允许,不得转载 :原文由作者发表在博客园:http://www.cnblogs.com/panxiaochun/p/5512142.html c#实现方法 LineSegment2D[][] lines = rgbRect.HoughLines(10, 150, 10, (Math.PI), 10, 0, 50); for (int i = 0; i < lines[0].Length; i++) { rgbIm…
条形码是当前超市和部分工厂使用比较普遍的物品,产品标识技术,使用摄像头检测一张图片的条形码包含有两个步骤,第一是定位条形码的位置,定位之后剪切出条形码,并且识别出条形码对应的字符串,然后就可以调用网络,数据库等手段快速进行后续处理. 条形码识别要考虑到条形码的特点,本文针对的是条形码在图片中的位置相对垂直,没有各种倾斜的那种条形码,如下图所示 要定位首先要检视这种条形码的特点,这种图像在X方向上的梯度肯定很明显,同时,Y方向的梯度就没这么明显,所以第一步,我们应该将图像的灰度图像分别计算梯度,用…
OpenCV矩形检测 需求:提取图像中的矩形,图像存在污染现象,即矩形区域不是完全规则的矩形. 思路一:轮廓法 OpenCV里提取目标轮廓的函数是findContours,它的输入图像是一幅二值图像,输出的是每一个连通区域的轮廓点的集合:vector<vector<Point>>.外层vector的size代表了图像中轮廓的个数,里面vector的size代表了轮廓上点的个数. 该方法的问题,得到的轮廓并不规则,(1)如何变成规则的长方形?直接取包围盒?(2)斑点状的边缘区域太多?…
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节介绍一种比较粗线条的表情分类与识别的办法. Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequential式.Model式)解读(二) 3.keras系列︱图像…
OpenCV绘制检测结果 opencv  rtcp  timestamp  一.介绍 由于在验证阶段,使用FPGA时我们的算法检测速度很慢,没法直接在主流上进行绘图,否则的话,主流就要等待算法很久才能出图.所以,我们的解决方案是把框推到客户端上,在客户端上进行绘图. 这时,客户端不仅收到图像帧,音频帧,还会收到一个框信息,需要把三者进行同步显示,不能图像.音频.框不匹配.而图像.音频都是通过ffmpeg写入的,不会有问题,而检测算法这边是独立于前面的出图进程,没有通过ffmpeg打包,所以需要使…
#include "iostream" #include "queue" using namespace std; #include "opencv2/opencv.hpp" #include "Windows.h" #include "opencv2/core/core.hpp" #include "opencv2/highgui/highgui.hpp" #include "…
这两天在初学目标检测的算法及步骤,其中人脸检测作为最经典的算法,于是进行了重点研究.该算法最重要的是建立人脸检测分类器,因此我用了一天的时间来学习分类器的训练.这方面的资料很多,但是能按照一个资料运行出结果的确实没有找到,因此我总结了自己的训练经验. 目标检测分为三个步骤: 1.样本的创建 2.训练分类器 3.利用训练的分类器进行目标检测 第一步:样本的创建 ◆     样本分两种: 正样本与负样本(也有人翻译成:正例样本和反例样本),其中正样本是指待检目标样本(例如人脸,汽车,鼻子等),负样本…
参考了博客http://blog.csdn.net/carson2005/article/details/7841443 后,自己动手后发现了一些问题,博客里提到的一些问题没有解决 ,是关于为什么图像的HOG特征向量debug后是15876的问题.答案是因为原作者的窗口是64*64的,所以维数为9*4*7*7=1764(图像的大小也是64*64,所以图像的特征维数与一个窗口的维数是相同的,compute()里的窗口步进(8,8)也是无效的).而我的图像时64*128大小的,我把窗口也换成 64*…
一.RGB color space 检测代码如下: void SkinRGB(IplImage* src,IplImage* dst) { //RGB颜色空间 //均匀照明:R>95,G>40,B>20,R-B>15,R-G>15,R>B%R //侧向照明:R>200,G>210,B>170,R-B<=15,R>B,G>B int height = src->height, width = src->width, chan…