题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到S的路径的费用和 + 重建这些T到S的双向路径的费用和. 思路1: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center&quo…
Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Let’s represent his enemy’s transportation system as a simple directed graph G with n nodes and m edges. Each node is a city and each directed edge is a…
看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最大流:就是最大流基础上,无源汇,每条边的流量有上下界. 这题是给一个图,V<=200,E<=5000,每条边有destroy[i][j]和build[i][j].选一个非空点集S,令T为S的补集.若max{∑D[s][t]-D[t][s]-B[t][s]}<=0输出happy否则输出unha…
思路:无源汇有上下界可行流判定, 原来每条边转化成  下界为D  上界为 D+B   ,判断是否存在可行流即可. 为什么呢?  如果存在可行流  那么说明对于任意的 S 集合流出的肯定等于 流入的, 流出的计算的 X 肯定小于等于这个流量(X是下界之和), 计算出来的Y (上界之和)肯定大于等于 这个流量  肯定满足X<=Y. #include<cstdio> #include<cstring> #include<algorithm> #include<cm…
/* <img src="http://img.blog.csdn.net/20140823174212937?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMTQ4MzMwNg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" /> 题意:给出一个有向强连通图,每条边有两个值各自是破坏该边…
#115. 无源汇有上下界可行流 先扔个板子,上下界的东西一点点搞,写在奇怪的合集里面 Code: #include <cstdio> #include <cstring> #include <algorithm> const int N=210; const int M=3e4; const int inf=0x3f3f3f3f; int head[N],to[M],Next[M],edge[M],cnt=1; void add(int u,int v,int w)…
传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源点,汇点连边,这样我们就成功去掉了下界的限制,上界从r变成了r-l,这样子跑一边最大流,看一下是不是每一条强制流完的边都流完了,如果有边没有流完,说明无法保证流出全部下界,否则的话就可以流完所有下界,又因为是要求可行流,所以只要下界留完了随便输出就行了. 代码: #include<bits/stdc…
#115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 这是一道模板题. n nn 个点,m mm 条边,每条边 e ee 有一个流量下界 lower(e) \text{lower}(e)lower(e) 和流量上界 upper(e) \text{upper}(e)upper(e),求一种可行方案使得在所有点满足流量平衡条件的前提下,所有边满足流…
\(\color{#0066ff}{ 题目描述 }\) 这是一道模板题. \(n\) 个点,\(m\) 条边,每条边 \(e\) 有一个流量下界 \(\text{lower}(e)\) 和流量上界 \(\text{upper}(e)\),求一种可行方案使得在所有点满足流量平衡条件的前提下,所有边满足流量限制. $\color{#0066ff}{ 输入格式 } $ 第一行两个正整数 \(n\).\(m\). 之后的 \(m\) 行,每行四个整数 \(s\).\(t\).\(\text{lower}…
点此看题面 大致题意: 给你每条边的流量上下界,让你判断是否存在可行流.若有,则还需输出一个合法方案. 大致思路 首先,每条边既然有一个流量下界\(lower\),我们就强制它初始流量为\(lower\). 而考虑到它还有一个流量上界\(upper\),其实这就等同于建一条初始流量为\(0\),而容量为\(upper-lower\)的边. 但考虑到流量平衡,因此我们可以考虑对于每个点用\(v_i\)记录下其流量的不平衡值,即对于一条边\(x->y\),我们将\(v_x\)减去\(lower\),…