题面 传送门 题解 不难发现最小圆覆盖的随机增量法复杂度还是正确的 所以现在唯一的问题就是给定若干个点如何求一个\(m\)维的圆 其实就是这一题 //minamoto #include<bits/stdc++.h> #define R register #define inline __inline__ __attribute__((always_inline)) #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i) #define fd(…
问题描述 LG2447 BZOJ1923 题解 显然是一个高斯消元,但是求的东西比较奇怪 发现这个方程组只关心奇偶性,于是可以用一个\(\mathrm{bitset}\)进行优化,用xor来进行消元操作. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; void read(int &x){ x=0;char ch=1;int fh; while(ch!='-'&&(ch<'0'||ch&…
问题描述 LG4035 BZOJ1013 题解 设答案为\((p_1,p_2,p_3,...,p_n)\) 因为是一个球体,令其半径为\(r\),则有 \[\sum_{i=1}^{n}{(a_i-p_i)}^2={\rm dis}^2\] 拆式子可得 \[\sum_{i=1}^{n}a_i^2-2\times\sum_{i=1}^{n}{a_ip_i}=\sum_{i=1}^{n}p_i^2-{\rm dis}^2\] 于是可以构造出新的方程矩阵: \[f_{i,j}=2 \times (a_{…
题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\(P_i\)表示一回合扣\(i\)滴血的概率,为 \[P_i={{k\choose i}m^{k-i}\over (m+1)^k}\] 所以这个柿子啥意思? 我们可以把\(k\)次扣血看成一个长度为\(k\)的序列,每个序列有\(m+1\)种选择方法,于是总的选法就是\((m+1)^k\).我们要钦定…
题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下”的期望步数. 设 f[ i ] 表示从根走到 i ,再走期望几步就能走到点集中的某个点.有 \( f[i]=\frac{1}{d[i]}\sum\limits_{j}(f[j]+1) \) ( j 是和 i 有边的点) 于是要“树上高斯消元”.其实就是尝试写成 \( f[i]=a[i]*f[st]…
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3601 题解 首先还是基本的推式子: \[\begin{aligned}f_d(n) &= \sum_{i = 1}^n [{\rm gcd}(i, n) = 1]i^d \\ &= \sum_{i = 1}^n i^d \sum_{k | i, k | n}\mu(k) \\ &= \sum_{k | n} \mu(k) \sum_{k | i} i^d \\ &…
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. 考虑 dp 的话,令 \(dp[x]\) 表示从 \(x\) 开始走的答案. 如果 \(x \in S\),那么 \(dp[x] = 0\): 否则,\(dp[x] = 1 + \frac{\sum\limits_{(x, y) \in T} dp[y]}{deg_x}\). 这个东西直接树上高斯…
题意:给定一个\(5\times 6\)的棋盘的\(01\)状态,每次操作可以使它自己和周围四个格子状态取反,求如何操作,输出一个\(01\)矩阵 题解:这题可以通过枚举第一行的状态然后剩下递推来做,但是这里还是写一种好理解的高斯消元解异或方程组的方法. 对于每个格子列一个方程,未知数就是要求的答案矩阵,系数的话把它周围的设为1,其他设为0.然后右边的常数项为它本来的状态.然后就高斯消元嘛. 我用了bitset优化,实际上可能unsigned int或者long long也可以. #includ…
应该算高斯消元经典题了吧. 题意:一个无向连通图,有两个人分别在\(s,t\),若一个人在\(u\),每一分钟有\(p[u]\)的概率不动,否则随机前往一个相邻的结点,求在每个点相遇的概率 题解: 首先求一个\(mov[i]=\frac{1-p[i]}{deg[i]}\)表示结点i每次移动到某个相邻结点的概率,\(deg[i]\)表示结点\(i\)的度 为了方便,我们把每个点向自己连条边,下面写式子好些(注意度数不能增加) 然后考虑设计状态\(f(a,b)\)表示第一个人在\(a\),第二个人在…
问题描述 LG3389 题解 高斯消元,是用来解\(n\)元一次方程组的算法,时间复杂度\(O(n^3)\) 这样就构造出了这个方程组的矩阵 目标就是把这个矩阵左边\(n \times n\)消为单位矩阵 \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; void read(int &x){ x=0;char ch=1;int fh; while(ch!='-'&&(ch<'0'||ch&…
题目描述 在一个游戏中有n个英雄,初始时每个英雄受到数值为ai的伤害,每个英雄都有一个技能"折射",即减少自己受到的伤害,并将这部分伤害分摊给其他人.对于每个折射关系,我们用数对\((x_i,y_i,z_i)\)来表示\(x_i\)将自己受到伤害去掉\(z_i\)的比例,将这些伤害转移给\(y_i\)(\(x_i,y_i\)是整数,\(z_i\)是实数). 求出经过反复折射后最后每个英雄受到的实际总伤害. 输入格式 第一行一个正整数:\(n\),表示有\(n\)个英雄,第二行\(n\)…
#include <cstdio> #include <vector> #include <algorithm> using namespace std; double Abs(double x) { return x < 0 ? -x : x; } double Max(double x, double y) { return x > y ? x : y; } double Min(double x, double y) { return x < y…
Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少有一个棋子,也至少有一个空位. 游戏的目标是:在还没有放棋子的格子上依次放棋子,并填满整个棋盘.在某个格子上放置棋子必须满足以下条件之一: 这个格子的上下一格都放有棋子: 这个格子的左右一格都放有棋子. JOI 君想知道有多少种从初始状态开始,并达到游戏目标的方案,这个答案可能会非常大.请你帮 JO…
[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. 可是-- 可是如果 Stalin 把自己当作炸弹扔到地堡花园里来了呢? 怀揣着这份小小的希望,元首 Adolf 独自走进了花园.终有一天会重逢的吧,Stalin.或许是在此处,或许是在遥远的彼方. 无论如何,在此之前,好好装点一番花园,编排一段优美的舞步吧! 元首把花园分为 \(n\) 行 \(m\…
[LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 G 的一个路径覆盖.P 中路径可以从 V 的任何一个顶点开始,长度也是任意的,特别地,可以为 0.G 的最小路径覆盖是 G 的所含路径条数最少的路径覆盖. 设计一个有效算法求一个有向无环图 G 的最小路径覆盖. 输入 第 1 行有 2 个正整数 n 和 m.n 是给定有向无环图 G 的顶点数,m 是…
#6250. 「CodePlus 2017 11 月赛」找爸爸 题目描述 小 A 最近一直在找自己的爸爸,用什么办法呢,就是 DNA 比对. 小 A 有一套自己的 DNA 序列比较方法,其最终目标是最大化两个 DNA 序列的相似程度,具体步骤如下: 给出两个 DNA 序列,第一个长度为 nnn,第二个长度为 mmm. 在两个序列的任意位置插入任意多的空格,使得两个字符串长度相同. 逐位进行匹配,如果两个序列相同位置上的字符都不是空格,假设第一个是 xxx,第二个是 yyy,那么他们的相似程度由 …
#6002. 「网络流 24 题」最小路径覆盖 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 给定有向图 G=(V,E) G = (V, E)G=(V,E).设 P PP 是 G GG 的一个简单路(顶点不相交)的集合.如果 V VV 中每个顶点恰好在 P PP 的一条路上,则称 P PP 是 G GG 的一个路径覆盖.P PP 中路径可以从 V VV 的任何一个顶点开…
Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相交)的集合.如果V中每个顶点恰好在P的一条路上,则称P是G的一个路径覆盖.P中路径可以从V的任何一个顶点开始,长度也是任意的,特别地,可以为0.G的最小路径覆盖是G的所含路径条数最少的路径覆盖. 设计一个有效算法求一个有向无环图G的最小路径覆盖. Input 第1行有2个正整数n和m.n是给定有向无…
loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积) loj 题解时间 首先想到先分开三进制下每一位,然后每一位分别求结果为0,1,2的树的个数. 然后考虑矩阵树求出来的是树的边权之积的和,而我们要求树的边权的不进位三进制和的和. 由于矩阵树求出来的是树的边权之积的和,考虑暴力上生成函数求解循环卷积,结果就是 $ c $ 的项的系数和. 但很明显生成函数暴力算是没得整的. 所以我们想到了利用单位根实现的k进制FWT. 很幸运的 $ \omega_{ 3 }…
近日,具有互联网基因的.亏损大户(成立三年基本没盈利,今年二季度末亏损近4亿,你能指望它多厉害?).财产险公司—众安推出“尊享e生”中高端医疗保险(财险公司经营中高端医疗真的很厉害?真的是中高端医疗险?医疗网络如何?服务如何?健康管理服务如何?直付效果如何?),宣传文案胆子大,宣传话术很玩味(有木有销售误导嫌疑?),推广势头很火爆,自称目前市上最牛最强医疗险,不是之一?? 可是,可是,除了购买方便(点击二维码,填写姓名.身份证两个内容就完成投保,家庭地址.邮编等一概不需要.只要点选如实告知页面下…
下载地址:https://github.com/pdcgomes/XCActionBar 基本命令: (1)「command+shift+8」或者双击「command」键可以打开「动作输入框窗口」 (2)「command+option+7」或者双击「alt」键可以执行「上次的动作」 编程时可用于双击或三击事件的按键分别为如下5个: (1)「alt」:NSAlternateKeyMask (2)「command」:NSCommandKeyMask (3)「control」:NSControlKey…
当我们在 GitHub 上 fork 出一个仓库后,如果原仓库更新了,此时怎样才能保证我们 fork 出来的仓库和原仓库内容一致呢?我们一般关注的是仓库的 master(主干分支)的内容,通过以下步骤来保证他最新就可以了. 前期准备: 可以使用源码管理可视化工具(客户端)来管理源码,例如「SourceTree」「GitHub Desktop」「Cornerstone」 这里我们使用「SourceTree」克隆「fork 出来的仓库」,以 AFNetworking 仓库为例进行介绍 步骤: 1.添…
本文系对「C++ Rvalue References Explained」 该文的翻译,原文作者:Thomas Becker. 该文较详细的解释了C++11右值引用的作用和出现的意义,也同时被Scott Meyers推荐,全文共分11个部分,我将利用业余时间,分别翻译. 受笔者水平所限,可能叙述会出现些许问题,还望多多指正. 部分名词为了保持含义和方便理解,并未翻译成中文,有的在括号内给出了常见的中文翻译. 目录 概述 Move语义 右值引用 强制Move语义 右值引用就是右值吗? Move语义…
WWDC2016 搜索广告分会视频和 PPT 发布了,ASO100 带开发者第一时间了解 Search Ads 后台设置(文末有原声视频). 首先介绍一下搜索广告的模式和竞价规则 广告模式为 CPT(Cost Per Tap,按点击收费),类似于国内的 CPC 广告模式.广告的展示受两个因素的影响:相关性与出价. 如下图,所有相关性低的广告都不被展示(无论出价高低),相关性相差不多时,展示出价高的广告. 苹果根据两方面来判断相关性,一是 App 文本的元数据(来源于描述等位置),二是用户点击广告…
故事的背景如下图,李笑来 老师于10月19日在 知乎Live 开设 一小时建立终生受用的阅读操作系统 的讲座,他老人家看到大家伙报名踊跃,便在微博上发起了一个 猜数量赢取iPhone7 的活动. 因为该活动注明了「不限猜的次数」,我便用 JavaScript 写一个自动转发的脚本,用机器代替手工转发,结果转发不到200次就被 李笑来 老师拉黑了,实在扫兴.与其独自郁闷,不如把技术细节分享给大家,祝大家能早日赢得 iPhone7.我的微博地址是:http://weibo.com/stone0090…
Write in the first[写在最前] 对于从事 iOS 开发人员来说,当提到 ** runtime时,我想都可以说出来 「runtime 运行时」和基本使用的方法.相信很多开发者跟我当初一样,也许当你使用这个重要的模块完成一些工作任务之后(复制粘贴的^_^.),还是不清楚 runtime** 知识体系和内在原理. ** runtime** 是 iOS 编程中比较难的模块,想要深入学习 OC,那 ** runtime** 是你必须要熟练掌握的东西,下面是我对 runtime 的整理,从…
引导 Copyright © PBwaterln Unauthorized shall not be *copy reprinted* . 对于从事 iOS 开发人员来说,所有的人都会答出「runtime 是运行时」,什么情况下用runtime?,大部分人能说出「给分类动态添加属性 || 交换方法」,再问一句「runtime 消息机制的调用流程 || 能体现runtime 强大之处的应用场景」,到这,能知道答案的寥寥无几,很少有人会说到"黑魔法"这三个字, ** runtime** 是…
原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio> #include <cstring> inline char gc() { static char now[1<<16],*S,*T; if(S==T) {T=(S=now)+fread(now,1,1<<16,stdin); if(S==T) return EOF;…
背景:在使用kettle 6进行大量数据并行抽取时,偶尔会出现「Unknown error in KarafBlueprintWatcher」的错误,详细的报错信息可以查看下面的代码块. ERROR: Bundle pentaho-big-data-api-runtimeTest [76] Error starting mvn:pentaho/pentaho-big-data-api-runtimeTest/6.1.0.1-196 (org.osgi.framework.BundleExcept…
0.前言 从这篇随笔开始记录Java虚拟机的内容,以前只是对Java的应用,聚焦的是业务,了解的只是语言层面,现在想深入学习一下. 对JVM的学习肯定不是看一遍书就能掌握的,在今后的学习和实践中如果有领会到的心得和踩过的坑,将会对这些文章进行更新. 另外,人脑更喜欢图胜过文字,有些流程先用文字码在那儿,后面有时间再画图. 1.「深入理解Java虚拟机」学习笔记(1) - Java语言发展趋势 2.「深入理解Java虚拟机」学习笔记(2)- JVM内存区域 3.[Java]「深入理解Java虚拟机…