Lucio: We avoided Mourinho after every loss】的更多相关文章

Former Inter defender Lucio has revealed how players had to avoid former Nerazzurri coach Mourinho every time the team suffered a defeat. The 37-year-old who won the treble under Mourinho back in 2010, stated that players would try to dodge the Portu…
转自:http://www.androiddesignpatterns.com/2013/08/fragment-transaction-commit-state-loss.html The following stack trace and exception message has plagued StackOverflow ever since Honeycomb's initial release: java.lang.IllegalStateException: Can not per…
使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来. 因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与matlab界面类似的一款编辑器,在运行过程中,可以查看各变量的值,便于理解,如下图: 只要安装了anac…
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miaoerduo.com/deep-learning/基于caffe的large-margin-softmax-loss的实现(中).html 四.前馈 还记得上一篇博客,小喵给出的三个公式吗?不记得也没关系. 这次,我们要一点一点的通过代码来实现这些公式.小喵主要是GPU上实现前后馈的代码,因为这个层只…
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L-Softmax,据说单model在LFW上能达到98.71%的等错误率.更重要的是,小喵觉得这个方法和DeepID2并不冲突,如果二者可以互补,或许单model达到99%+将不是梦想. 再次推销一下~ 小喵的博客网址是: http://www.miaoerduo.com 博客原文:  http://…
什么是loss?   loss: loss是我们用来对模型满意程度的指标.loss设计的原则是:模型越好loss越低,模型越差loss越高,但也有过拟合的情况.   loss function: 在分类问题中,输入样本经过含权重矩阵θ的模型后会得出关于各个类别的分值,如何通过分值与样本的标签来得到我们对模型的满意程度就是Loss function的主要工作了.训练过程中通过调整参数矩阵θ来降低loss,使用模型更优.多分类问题中常用Softmax分类器与多类SVM分类器. Softmax分类器…
import re import pylab as pl import numpy as np if __name__=="__main__": accuracys=[] losses=[] with open(r'/home/wxl/bnscallog.txt','r') as f: lines=f.readlines(); print len(lines) str="".join(lines) str=str.replace('\n','') print len…
Back-propagation in a nerual network with a Softmax classifier, which uses the Softmax function: \[\hat y_i=\frac{\exp(o_i)}{\sum_j \exp(o_j)}\] This is used in a loss function of the form: \[\mathcal{L}=-\sum_j{y_j\log \hat y_j}\] where \(o\) is a v…
Do you feel like you've lost confidence in yourself? Have you had strong self doubts? Perhaps you were very successful once, but now, after 3+ years of recession, massive job losses, evaporation of retirement savings, a government that seems to not c…
实际上,代价函数(cost function)和损失函数(loss function 亦称为 error function)是同义的.它们都是事先定义一个假设函数(hypothesis),通过训练集由算法找出一个最优拟合,即通过使的cost function值最小(如通过梯度下降),从而估计出假设函数的未知变量. 例如: 可以看做一个假设函数,而与之对应的loss function如下: 通过使E(w)值最小,来估计出相应的w值,从而确定出假设函数(目标函数),实现最优拟合. 硬要说区别的话,l…
下面自从Honeycomb发布后,下面栈跟踪信息和异常信息已经困扰了StackOverFlow很久了. java.lang.IllegalStateException: Can not perform this action after onSaveInstanceState at android.support.v4.app.FragmentManagerImpl.checkStateLoss(FragmentManager.java:1341) at android.support.v4.a…
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数可以看做 误差部分(loss term) + 正则化部分(regularization term) 1.1 Loss Term Gold Standard (ideal case) Hinge (SVM, soft margin) Log (logistic regression, cross en…
当HoloLens设备不能识别到自己在世界中的位置时,应用就会发生tracking loss.默认情况下,Unity会暂停Update更新循环并显示一张闪屏图片给用户.当设备重新能追踪到位置时,闪屏图片会消失,并且Update循环还会继续. 此外,用户也可以手动处理这个切换过程.发生tracking loss期间,如果不做任何处理动作,那么所有的场景中的全息内容将会处于body-locked状态. 默认处理方式 Default Handling 默认情况下,发生tracking loss期间应用…
以分类任务为例, 假设要将样本分为\(n\)个类别. 先考虑单个样本\((X, z)\). 将标题\(z\)转化为一个\(n\)维列向量\(y = (y_1, \dots y_k, \dots, y_n)^T\): \[ y_k= \begin{cases} 0& k \neq z \\ 1& k = z \end{cases} \] \(p_z\)是模型将此样本分到类别\(z\)的概率, 即正确分类的概率\(p_{correct}\). 在这个样本上的Cross-Entropy Loss…
@tags: caffe 机器学习 在机器学习(暂时限定有监督学习)中,常见的算法大都可以划分为两个部分来理解它 一个是它的Hypothesis function,也就是你用一个函数f,来拟合任意一个输入x,让预测值t(t=f(x))来拟合真实值y 另一个是它的cost function,也就是你用一个函数E,来表示样本总体的误差. 而有时候还会出现loss function,感觉会和cost function混淆. 上quora看了下,有个同名问题,回答的人不多,upvote更少..回答者里面…
penalty term 和 loss function 看起来很相似,但其实二者完全不同. 惩罚因子: penalty term的作用是把受限优化问题转化为非受限优化问题. 比如我们要优化: min f(x) = $x^2 - 10x$  x 受限于 g(x) = x -3 <= 0 我们可以利用惩罚因子,将上述问题转化为非受限约束问题,也就是拿掉g(x)的限制. 函数变为: min P(x,s,r) = $x^2 - 10x + sr\phi(x - 3)$ 其中s = +1 或-1, r…
Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function CVPR 2016 摘要:跨摄像机的行人再识别仍然是一个具有挑战的问题,特别是摄像机之间没有重叠的观测区域.本文中我们提出一种 多通道 基于part 的卷积神经网络模型,并且结合 改善的三元组损失函数 来进行最终的行人再识别.具体来说,所提出的 CNN 是由多个channel构成的,可以联合的学习 global…
如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制. // In [1]: #加载必要的库 import numpy as np import matplotlib.pyplot as plt %matplotlib inline import sys,os,caffe #设置当前目录 caffe_root = '/home/bnu/caffe/' sys.path.insert(0, caffe_root + 'python') os.chdir(caffe_ro…
归档日志被物理删除后执行rman操作报错: RMAN> backup database plus archivelog; Starting backup at -JUL- :: current log archived using target database control file instead of recovery catalog allocated channel: ORA_DISK_1 channel ORA_DISK_1: SID= device type=DISK RMAN-…
Tutorial:  Triplet Loss Layer Design for CNN Xiao Wang  2016.05.02 Triplet Loss Layer could be a trick for further improving the accuracy of CNN. Today, I will introduce the whole process, and display the code for you. This tutorial mainly from the b…
1. 首先是提取 训练日志文件; 2. 然后是matlab代码: clear all; close all; clc; log_file = '/home/wangxiao/Downloads/43_attribute_baseline.log'; fid = fopen(log_file, 'r'); fid_accuracy = fopen('/home/wangxiao/Downloads/output_accuracy.txt', 'w'); fid_loss = fopen('/hom…
Hinge Loss 解释 SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法.这里换一种角度来思考,在机器学习领域,一般的做法是经验风险最小化 ERM ,即构建假设函数为输入输出间的映射,然后采用损失函数来衡量模型的优劣.求得使损失最小化的模型即为最优的假设函数,采用不同的损失函数也会得到不同的机器学习算法,比如这里的主题 SVM 采用的是 Hinge Loss ,Logistic Regression 采用的则是负 $\log$…
原文:http://luowei828.blog.163.com/blog/static/310312042013101401524824 通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成.发现一份不错的介绍资料: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf (题名“Loss functions; a unifying vi…
[machine learning] Loss Function view 有关Loss Function(LF),只想说,终于写了 一.Loss Function 什么是Loss Function?wiki上有一句解释我觉得很到位,引用一下:The loss function quantifies the amount by which the prediction deviates from the actual values.Loss Function中文损失函数,适用于用于统计,经济,机…
在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层.卷积操作层.pooling层.非线性变换层.内积运算层.归一化层.损失计算层等:本篇主要介绍loss层 1. loss层总述 下面首先给出全loss层的结构设置的一个小例子(定义在.prototxt文件中) layer { name: "loss" type: "SoftmaxWithLoss" //loss fucntion的类型 bottom: &qu…
关于回波损耗 和 驻波比的摘要 以下摘自:http://www.soontai.com/cal_rtvswr.html RL = 20log((VSWR+1) / (VSWR-1)) VSWR = (1+(10^RL/20)) / ((10^RL/20)-1) * RL = Return Loss Return Loss :This is the dB value of absolute reflection coefficient.It is rather curious concept of…
Loss function = Loss term(误差项) + Regularization term(正则项),上次写的是误差项,这次正则项. 正则项的解释没那么直观,需要知道不适定问题,在经典的数学物理中,人们只研究适定问题.适定问题是指满足下列三个要求的问题:①解是存在的(存在性):②解是惟一的(唯一性):③解连续依赖于初边值条件(稳定性).这三个要求中,只要有一个不满足,则称之为不适定问题.特别,如果条件③不满足,那么就称为阿达马意义下的不适定问题.一般地说不适定问题,常常是指阿达马意…
Loss function = Loss term(误差项) + Regularization term(正则项),我们先来研究误差项:首先,所谓误差项,当然是误差的越少越好,由于不存在负误差,所以为0是极限,而误差得越多当然也越不好 1. Gold function,理想中的效果 正样本,损失为0:为负样本,损失为1 2. Hinge function,应用于SVM 线性划分,f = max(0, 1 - m(x)) m(x) > 0,正样本,正得越厉害,损失越少:m(x) < 0,负样本,…
转自:http://blog.csdn.net/u013078356/article/details/51154847 在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果.如 果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tools/extra/parse_log.sh  caffe-master/tools/extra/extract_seconds.py和 caffe-master/tools/ext…
感谢原文作者!原文地址:http://eletva.com/tower/?p=186 一.Loss Function 什么是Loss Function?wiki上有一句解释我觉得很到位,引用一下:The loss function quantifies the amount by which the prediction deviates from the actual values.Loss Function中文损失函数,适用于用于统计,经济,机器学习等领域,虽外表形式不一,但其本质作用应是唯…