LUCAS定理简述】的更多相关文章

Lucas定理解决的是n,m比较大而p是小于100000质数 简而言之就是Lucas(n,m)=C(n%p,m%p)*Lucas(n/p,m/p)%p; 其中组合数C是用任意一种计算10五次方内取模的组合数计算 比如可以预处理阶乘fac[i],然后直接C(n,m)=fac[n]*quickpow(fac[n-m]*fac[m],p-2)%p; 或者O(n)套公式直接算也可以 要注意n可能小于m,因为是取模后的结果,这个时候返回0[不然会RE] 下面给的是预处理阶乘的 #include<iostr…
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standard output Devu wants to decorate his garden with flowers. He has purchased n boxes…
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 . 要解决这个问题首先需要Lucas定理 或者 C!解法. Lucas定理: 我们令n=sp+q , m=tp+r . q , r ≤ p 那么,然后你只要继续对调用Lucas定理即可. 代码可以递归的去完成这个过程,其中递归终点为t = 0 : 伪代码,时间O(logp(n)*p): int L…
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Status][Discuss] Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升.它有三个参数n,k.它会 向编号为0到k的位置发射威力为C(n,…
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以直接用杨辉三角递推,边做加法边取模. (2) ,   ,并且是素数 本文针对该取值范围较大又不太大的情况(2)进行讨论. 这个问题可以使用Lucas定理,定理描述: 其中 这样将组合数的求解分解为小问题的乘积,下面考虑计算C(ni, mi) %p. 已知C(n, m) mod p = n!/(m!(…
Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4315    Accepted Submission(s): 1687 Problem Description Although winter is far away, squirrels have to work day and night to save be…
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了.猪…
Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analyse: 直接可以用Lucas定理+快速幂水过的,但是我却作死的用了另一种方法. 方法一:Lucas定理+快速幂水过 方法二:首先问题可以转化为求(0,0),(n,m)这个子矩阵的所有数之和.画个图容易得到一个做法,对于n<=m,答案就是2^0+2^1+...+2^m=2^(m+1)-1,对于n>m…
Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting numbers very much, especially he is fond of counting odd numbers. Maybe he thinks it is the best way to show he is alone without a girl friend. The day…
题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个数是个经典问题,可以+1转化正整数解的个数用插板法解决:$C_{y+n-1}^{n-1}=C_{y+n-1}^y$. 而0<=y<=m,最后的结果就是—— $$\sum_{i=0}^m C_{i+n-1}^i$$ $$C_{n-1}^0+C_{n}^1+C_{n+1}^2+\dots+C_{n-1…
大致意思就是求组合数C(n , m) % p的值, p为一个偶数 可以将组合数的n 和 m都理解为 p 进制的表示 n  = ak*p^k + a(k-1)*p^(k-1) + ... + a1*p + a0 m = bk*p^k + b(k-1)*p^(k-1) + ... + b1*p + b0 然后C(n,m)%p = C(ak , bk) * C(a(k-1) , b(k-1)) * ... * C(a1 , b1) * C(a0 , b0) % p 当然这其中出现 ai < bi的情况…
N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果.   Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input示例 4 Output示例 10 明显是一道卡特兰数,推出ans = C(2*n-2,n-1) * 2 / n % MOD先让n--,ans = C(2*n,…
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) .我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理.对于模p而言,我们有下面的式子成立: 上式左右两边的x的某项x^m(m<=n)的系数对模p同余.其…
Lucas定理 Lucas(n,m,p)=c(n%p,m%p)* Lucas(n/p,m/p,p),其中lucas(n,m,p)=C(n,m)%p (这里的除号是整除) 证明——百度百科 题意:求n个数的和<=m的方案数 题解: 求a1+a2+ ... +an=m方案数, 利用隔板法要使得每个数>=1,所以令bi = ai+1>=1 则 b1+b2+ ... +bn=m+n方案数为C(m+n-1, n-1)=C(m+n-1, m) 故 ans = sigama(C(i+n-1, i))…
4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数.第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. Output 输出包含T…
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Status][Discuss] Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升.它有三个参数n,k.它会 向编号为0到k的位置发射威力为C(n…
Lucas定理:用于计算组合数模除素数后的值,其实就是把(n,m)分别表示为p进制,累乘各位的可能取的个数,得到最终的结果: 推论:(n & m) == m则C(n,m)为奇数:即C(n,m) %2 = 1,即m二进制的每一位n都必须为1,所以n & m = m; 应用: Xiao Ming's Hope 题意:问C(n,0),C(n,1)...C(n,n)中有多少个为奇数?(1 <= n <= 1e8) ACM_cxlove的证明 思路:用朴素的n & m == m来…
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern…
Lucas定理这里有详细的证明. 其实就是针对n, m很大时,要求组合数C(n, m) % p, 一般来说如果p <= 10^5,那么就能很方便的将n,m转化为10^5以下这样就可以按照乘法逆元的方法求解. 定义: C(n, m) = C(n%p, m%p)*C(n/p, m/p) (mod p) 一种比较好理解的证明方式是这样的, 上面资料中有提到, 由p为质数,(1+x)^p = 1+x^p (mod p) p为质数,然后就是下面这幅图的内容了. 将n, m分别表示成p进制,n = n/p*…
1902: Zju2116 Christopher Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 172  Solved: 67[Submit][Status][Discuss] Description 给定n个元素,要从中间选择m个元素有多少种方案呢?答案很简单,就是C(n,m).如果一个整数m(0≤m≤n),C(n,m)是某一个质数p的倍数,那么这个m就是讨厌的数字,现在给定了p和n,求有多少个讨厌的数字. Input 第一行是一个正整数n,(1…
今天考试的题目中有大组合数取模,不会唉,丢了45分,我真是个弱鸡,现在还不会lucas. 所以今天看了一下,定理差不多是: (1)Lucas定理:p为素数,则有: 即:lucas(n,m,p)=c(n%p,m%p)*lucas(n/p,m/p,p)  然后留下我的理解: 用递归的方式去证明这个式子: 先考虑阶乘,在%p的意义下,x!=(p!^(x/p))*(x/p)!*(x%p)!这里把有p因子的数不模p,用于组合数的'抵消'. 在看到组合数 : C(x,y)=x!/((x-y)!*y!) =(…
对于很大的组合数不能用C(n, m) = C(n - 1, m) + C(n-1, m -1)来求,这里就用到Lucas定理. 模板题: hdu3037:模板如下: #include <cstdio> using namespace std; ; typedef long long ll; ll F[maxn]; //求1-p所有的阶乘模上p void init(ll p) { F[] = ; ; i <= p; i++) F[i] = F[i - ] * i % p; } //求逆元…
转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud How Many Sets II Time Limit: 2 Seconds      Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, number m and p, your job is to count how many set T satisfies the following condition: T is…
解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string&g…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] 首先我们可以用Lucas定理求出对答案对每个质因子的模,然后我们发现只要求解这个同余方程组就可以得到答案,所以我们用中国剩余定理解决剩下的问题. [代码] #include <cstdio> #include <cstring> #include <algorithm> u…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5226 题意:给一个矩阵a,a[i][j] = C(i,j)(i>=j) or 0(i < j),求(x1,y1),(x2,y2)这个子矩阵里面的所有数的和. 思路:首先可以推导出一个公式C(n,i)+C(n + 1,i)+...+C(m,i) = C(m + 1,i + 1) 知道了这个公式,就可以将子矩阵里每行(或每列)的和值表示成组合数的差值,现在的关键是求出C(n,m)(mod p). 由于…
题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Description 在很久很久以前,有个臭美国王.一天,他得到了一件新衣,于是决定巡城看看老百姓的反应(囧).于是他命令可怜的宰相数一下他有多少种巡城方案. 城市是一个N*M的矩形,(N+1)*(M+1)条街把城市分成了N*M块.国王从左下角出发,每次只能向右或向上走,右上角是终点. 请你帮帮可怜的宰相.   In…
输入p n 求杨辉三角的第n+1行不能被p整除的数有多少个 Lucas定理: A.B是非负整数,p是质数.AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0].     则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0])  mod p同余 即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p),在存在i.b[i]>a[i]时,mod值为0,所以必然整除.当对于全…
LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; } return ret; } LL C(int n, int m) { ) ; LL a = fact[n], b = fact[n - m] * fact[m] % MOD; ) % MOD;//除以一个数,等于乘以这个数的乘法逆元, 然后是在MOD的情况下 } 上面的代码可以计算组合数取模, 能解决的规…